Gọi M,N lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x 3 - 3 x 2 + 1 trên đoạn [1;2] Khi đó tổng M+N bằng
A.2
B.-2
C.0
D.-4
Gọi M, N lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x + 4 - x 2 . Giá trị của biểu thức (M + 2N) là
A. 2 2 + 2
B. 4 - 2 2
C. 2 2 - 4
D. 2 2 - 2
Chọn C
Tập xác định của hàm số: D = [-2;2]
Ta có
Ta lại có
Từ đó suy ra
Vậy
Gọi M,N lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x + 4 - x 2 Giá trị của biểu thức M + 2 N là
A. 2 2 + 2
B. 4- 2 2
C. 2 2 -4
D. 2 2 -2
Chọn C.
Tập xác định của hàm số
Cách 1: Bấm máy tính. Với máy 580vn chọn start:-2, end: 2, step: 2/9 có:
thử thấy phương án C gần nhất với kết quả này nên ta chọn C.
Cho hàm số y=f(x), x ∈ - 2 ; 3 có đồ thị như hình vẽ. Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số f(x) trên đoạn - 2 ; 3 . Giá trị của M+n là
A. 6
B. 1
C. 5
D. 3
Cho hàm số y = x 3 − 3 x 2 + 3 . Gọi M, n lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên đoạn 1 ; 3 thì M, n bằng:
A. 8
B. 2
C. 4
D. 6
Gọi M và N lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = - 1 + 2 . cos x 2 - 3 . sin x + cos x trên ℝ . Biểu thức M + N + 2 có giá trị bằng:
A. 0
B. 4 2 - 3
C. 2
D . 2 + 3 + 2
Gọi M, N lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số y = x 2 . e − x trên đoạn − 1 ; 1 . Tính tổng M+N.
A. M + N = 3 e
B. M + N = e
C. M + N = 2 e − 1
D. M + N = 2 e + 1
Đáp án B
Ta có: y ' = e − x 2 x − x 2 ⇒ y ' = 0 ⇔ x = 0 x = 2
Suy ra: y − 1 = e , y 0 = 0 , y 1 = 1 e
⇒ M = e N = 0 ⇒ M + N = e
Gọi M và m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số: y = 2 sin 2 x − cos x + 1. Giá trị M+n bằng:
A. 0
B. 2
C. 25 8
D. 41 8
Đáp án C
Phương pháp:
Biến đổi hàm số về hàm số bậc hai đối với cos x , đặt cos x = t và tìm GTLN, GTNN của hàm số với chú ý
Cách giải:
Ta có: y = 2 sin 2 x − cos x + 1
= 2 1 − cos 2 x − cos x + 1 = − 2 cos 2 x − cos x + 3
Đặt t = cos x − 1 ≤ t ≤ 1
y t = − 2 t 2 − t + 3 ⇒ y ' t = − 4 t − 1
y ' 0 = 0 ⇔ t = − 1 4 ∈ − 1 ; 1
⇒ M = max y = y − 1 4 = 25 8 ; m = min y = y 1 = 0 ⇒ M + m = 25 8
Chú ý khi giải:
HS thường nhầm lẫn khi tìm GTLN, GTNN của hàm số, hoặc ở bước đặt ẩn phụ quên không đặt điều kiện cho ẩn mới.
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x + 4 - x 2 Tính M – m.
A. M - m = 2 2
B. M - m = 2 2 + 2
C. M-n=4
D. M - n = 2 2 - 2
Gọi M, m lần lượt là giá trị lớn nhất, giá trị nhỏ nhất của hàm số y = x + 4 - x 2 . Tính M – m.
A. M - m = 2 2
B. M - m = 2 2 + 2
C. M - m = 4
D. M - m = 2 2 - 2
Chọn B.
Phương pháp
- Tính y' , tìm các nghiệm của y' = 0 .
- Tính giá trị của hàm số tại các điểm đầu mút và các điểm vừa tìm được ở bước trên và so sánh kết quả.
Gọi m, M lần lượt là giá trị nhỏ nhất và giá trị lớn nhất của hàm số y = x + 9 x trên đoạn [1;4]. Giá trị của m + M bằng
A. 65 4
B. 16
C. 49 4
D. 10
Chọn B
Hàm số xác định và liên tục trên đoạn [1;4]. Đặt y = f(x)
Ta có:
Có
Vậy m + M = 16.