Câu 6: Cho △ABC vuông tại A, biết AB=3cm, BC=5cm. Giải tam giác vuông đó
Cho tam giác ABC vuông tại B, có AB bằng 3cm, BC bằng 5cm. Hãy giải tam giác vuông ABC.
\(AC=\sqrt{3^2+5^2}=\sqrt{34}\left(cm\right)\)
Xét ΔABC vuông tại B có
\(\sin\widehat{A}=\dfrac{BC}{AC}=\dfrac{5\sqrt{34}}{34}\)
nên \(\widehat{A}\simeq59^0\)
hay \(\widehat{C}=31^0\)
giúp em nhanh câu B ạ
cho tam giác ABC vuông tại A . kẻ AD là phân giác của góc ABC
a ) biết BC = 5cm ; AB = 3cm . tính AC vaf AD
b) qua D kẻ DH vuông góc vs BC tại H . CMR : tam giác ABC ~ vs tam giác HDC
a: \(AC=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(AD=\dfrac{2\cdot3\cdot4}{3+4}\cdot cos45=\dfrac{12}{7}\sqrt{2}\left(cm\right)\)
b: Sửa đề: vuông góc AC
Xét ΔABC vuông tại A và ΔHDC vuông tại H có
góc C chung
=>ΔABC đồng dạng với ΔHDC
Câu 6. Cho tam giác ABC vuông tại A, đường trung tuyến AM. Biết AB = 3cm, AC = 4cm. Độ dài AM = ? *
A.5cm B.3cm C.4cm D.2,5cm
Áp dụng định lí Pytago:
`BC^2=AB^2+AC^2`
`<=>BC^2=3^2+4^2`
`<=>BC=5(cm)`
AM là đường trung tuyến của `\DeltaABC`
`=> AM = (BC)/2 = 5/2 (cm)`
Ta có
\(\frac{AD}{DC}=\frac{AB}{BC}=\frac{3}{5}\) (Trong tam giác, đường phân giác của một góc chia cạnh đối diện thành hai đoạn tỉ lệ với hai cạnh kề của hai đoạn ấy)
\(\Rightarrow AB=\frac{3.BC}{5}\)
Ta có
\(BC^2=AB^2+AC^2\) (pitago)
\(\Rightarrow BC^2=\left(\frac{3.BC}{5}\right)^2+\left(AD+DC\right)^2\)
\(\Rightarrow BC^2=\frac{9.BC^2}{25}+64\Rightarrow16.BC^2=1600\Rightarrow BC^2=100\Rightarrow BC=10cm\)
\(AB=\frac{3.BC}{5}=\frac{3.10}{5}=6cm\)
Cho tam giác ABC vuông tại A có đường cao AH. Chứng minh: giải câu e thôi mấy câu kia bt làm r
a) AB
2 = BH.BC
b) AH2 = HB.HC
c) AB.AC = AH.BC
d)
2 2 2
1 1 1
AH AB AC
= +
e) Biết AB = 3cm, BC = 5cm. Tính AH?
Theo Pytago tam giác ABC vuông tại A ta có
\(AC=\sqrt{BC^2-AB^2}=4cm\)
Ta có \(S_{ABC}=\dfrac{1}{2}.AH.BC;S_{ABC}=\dfrac{1}{2}.AB.AC\Rightarrow AH=\dfrac{AB.AC}{BC}=\dfrac{12}{5}\)cm
cho tam giác abc vuông tại b. tìm các tỉ số lượng giác của góc c sau đó tính góc b,c khi: a,bc=5cm,ab=12cm b,bc=10cm,ac=3cm c,ac=5cm,ab:3cm.
a: AC=căn 5^2+12^2=13cm
sin C=AB/AC=12/13
cos C=5/13
tan C=12/5
cot C=1:12/5=5/12
b: AC=căn 10^2+3^2=căn 109(cm)
sin C=AB/AC=3/căn 109
cos C=BC/AC=10/căn 109
tan C=AB/BC=3/10
cot C=10/3
c: BC=căn 5^2-3^2=4cm
sin C=AB/AC=3/5
cos C=4/5
tan C=3/4
cot C=4/3
Cho tam giác ABC vuông tại A có AB\(=\) 3cm, BC \(=5cm.\)
Tính diện tích tam giác ABC
Áp dụng định lí Pytago có:
\(AC=\sqrt{BC^2-AB^2}=\sqrt{5^2-3^2}=4\left(cm\right)\)
\(\Rightarrow S_{ABC}=\dfrac{AB.AC}{2}=\dfrac{3.4}{2}=6\left(cm^2\right)\)
Diện tích tam giác ABC là:
( 3. 5 ): 2 = 7.5 ( cm2)
Đ/s:...
Cho tam giác ABC vuông tại A , đường cao AH , AB = 3cm , BC = 6 cm Giải tam giác vuông
Cho tam giác ABC vuông tại A, kẻ tia phân giác góc ABC cắt AC tại D
a. Biết BC = 5cm, AB= 3cm. Tính AC và AD
b. Qua D kẻ DH vuông góc với BC tại H. CHứng minh ΔABC ᔕ ΔHDC từ đó chứng minh CH.CB = CD.CA
c. E là hình chiếu của A trên BC. Chứng minh BC/BA = HC/HE
d. O là giao điểm của BD và AH. Qua B kẻ đường thẳng song song với AH cắt các tia CO vafCA lần lượt tại M và N. Chứng minh M là trung điểm của BN
giúp mình câu c,d
a: Ta có: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2=5^2-3^2=16\)
=>\(AC=\sqrt{16}=4\left(cm\right)\)
Xét ΔBAC có BD là phân giác
nên \(\dfrac{AD}{AB}=\dfrac{CD}{BC}\)
=>\(\dfrac{AD}{3}=\dfrac{CD}{5}\)
mà AD+CD=AC=4
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AD}{3}=\dfrac{CD}{5}=\dfrac{AD+CD}{3+5}=\dfrac{4}{8}=\dfrac{1}{2}\)
=>\(AD=\dfrac{3}{2}=1,5\left(cm\right)\)
b: Xét ΔCHD vuông tại H và ΔCAB vuông tại A có
\(\widehat{HCD}\) chung
Do đó: ΔCHD đồng dạng với ΔCAB
=>\(\dfrac{CH}{CA}=\dfrac{CD}{CB}\)
=>\(CH\cdot CB=CA\cdot CD\)
c: Ta có: AE\(\perp\)BC
DH\(\perp\)BC
Do đó: HD//AE
Xét ΔAEC có HD//AE
nên \(\dfrac{HC}{HE}=\dfrac{CD}{DA}\)
mà \(\dfrac{CD}{DA}=\dfrac{BC}{BA}\)
nên \(\dfrac{HC}{HE}=\dfrac{BC}{BA}\)
d: Xét ΔBAD vuông tại A và ΔBHD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔBAD=ΔBHD
=>BA=BH và DA=DH
Ta có: BA=BH
=>B nằm trên đường trung trực của AH(1)
Ta có: DA=DH
=>D nằm trên đường trung trực của AH(2)
Từ (1),(2) suy ra BD là đường trung trực của AH
=>BD\(\perp\)AH tại O và O là trung điểm của AH
=>OA=OH(3)
Xét ΔCMN có AO//MN
nên \(\dfrac{AO}{MN}=\dfrac{CO}{CM}\left(4\right)\)
Xét ΔCBM có OH//BM
nên \(\dfrac{OH}{BM}=\dfrac{CO}{CM}\left(5\right)\)
Từ (3),(4),(5) suy ra MN=BM
=>M là trung điểm của BN