Cho khối lăng trụ ABC.A’B’C’. Gọi E là trọng tâm tam giác A’B’C’ và F là trung điểm BC. Tính tỉ số thể tích giữa khối B’.EAF và khối lăng trụ ABC.A’B’C’.
A. 1 4
B. 1 8
C. 1 5
D. 1 6
Cho khối lăng trụ ABC.A’B’C’. Gọi E là trọng tâm tam giác A’B’C’ và F là trung điểm BC. Tính tỉ số thể tích giữa khối B’.EAF và khối lăng trụ ABC.A’B’C’.
Cho khối lăng trụ ABC.A’B’C’. Gọi P là trọng tâm tam giác A’B’C’ và Q là trung điểm của BC. Tính tỉ số thể tích giữa hai khối tứ điện B’PAQ và A’ABC
A. 1 2 .
B. 2 3 .
C. 3 4 .
D. 1 3 .
Đáp án A.
Gọi M là trung điểm của B ' C ' ⇒ A , M , P thẳng hàng.
Do đó S P A Q = 1 2 S A A ' M Q .
V B ' . P A Q = 1 2 V B ' . A A ' M Q . Dễ thấy
V B ' . A B Q = 1 3 V B ' A ' M . B A Q ⇒ V B ' . A A ' M Q = 2 3 V B ' A ' M . B A Q = 2 3 . 1 2 V A ' B ' C ' . A B C
⇒ V P A Q = 1 2 . 2 3 . 1 2 .3 V A ' . A B C = 1 2 V A ' A B C .
Cho khối lăng trụ ABC. A'B'C'. Gọi E là trọng tâm tam giác A'B'C' và F là trung điểm BC. Tính tỉ số thể tích giữa khối B'. EAF và khối lăng trụ ABC. A'B'C'.
A. 1 4
B. 1 8
C. 1 5
D. 1 6
Cho hình lăng trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ lên (ABC) trùng với trọng tâm của tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA’ và BC bằng a 3 4 . Tính theo a thể tích V của khối lăng trụ ABC.A’B’C’.
A. V = a 3 3 6
B. V = a 3 3 12
C. V = a 3 3 3
D. V = a 3 3 24
Cho hình trụ ABC.A’B’C’ có đáy là tam giác đều cạnh a. Hình chiếu vuông góc của điểm A’ lên mặt phẳng (ABC) trùng với trọng tâm tam giác ABC. Biết khoảng cách giữa hai đường thẳng AA’ và BC bằng a 3 4 . Tính thể tích Vcủa khối lăng trụ ABC.A’B’C’
A. V = a 3 3 24
B. V = a 3 3 12
C. V = a 3 3 3
D. V = a 3 3 6
Đáp án B
Phương pháp giải:
Dựng hình, xác định khoảng cách giữa hai đường thẳng chéo nhau để tính chiều cao lăng trụ
Lời giải: Gọi M là trung điểm của BC.
Ta có
Kẻ => MH là đoạn vuông góc chung của BC, AA’
Mà
Xét tam giác vuông AA’G có :
Vậy thể tích cần tính là:
Cho lăng trụ tam giác đều A B C . A ’ B ’ C ’ có cạnh đáy bằng 2a, O là trọng tâm tam giác ABC và A ' O = 2 a 6 3 . Thể tích của khối lăng trụ A B C . A ’ B ’ C ’ bằng
A. 2 a 3
B. 2 a 3 3 .
C. 4 a 3 3 .
D. 2 a 3 3 .
Phương pháp
Tính chiều cao lăng trụ dựa vào định lý Pytago
Tính thẻ tích lăng trụ V = S.h với S là diện tích đáy và h là chiều cao lăng trụ
Cách giải:
Gọi E là trung điểm của BC.
Chọn A
Cho lăng trụ tam giác đều ABC.A’B’C’ có cạnh đáy bằng 2a; O là trọng tâm tam giác ABC và A ' O = 2 6 a 3 Thể tích của khối lăng trụ ABC.A’B’C’ bằng
A. 2 a 3
B. 4 a 3 3
C. 2 a 3 3
D. 4 a 3
Cho lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác đều cạnh 2a, hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết góc giữa cạnh bên và mặt phẳng đáy bằng 60 0 . Tính thể tích khối lăng trụ ABC.A’B’C’
A . a 3 3 4
B . 4 a 3 3
C . 2 a 3 3
D . a 3 3 2
Đáp án C
Gọi M là trung điểm của BC suy ra
Lại có
Cho lăng trụ tam giác ABC.A’B’C’ có đáy ABC là tam giác đều cạnh 2a, hình chiếu của A’ lên mặt phẳng (ABC) trùng với trọng tâm của tam giác ABC. Biết góc giữa cạnh bên và mặt phẳng đáy bằng 60 ° Tính thể tích khối lăng trụ ABC.A’B’C’
A. a 3 3 4
B. 4 a 3 3
C. 2 a 3 3
D. a 3 3 2