Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
nguyenlengan
Xem chi tiết
Lê Hoài Duyên
9 tháng 9 2017 lúc 23:49

*Ta có: A\(=2^1+2^2+2^3+2^4+...+2^{2010}\)

              \(=\left(2+2^2\right)+2^2\times\left(2+2^2\right)+...+2^{2008}\times\left(2+2^2\right)\)

              \(=\left(2+2^2\right)\times\left(1+2^2+2^3+...+2^{2008}\right)\)

              \(=6\times\left(2^2+2^3+...+2^{2008}\right)\)

              \(=3\times2\times\left(2^2+2^3+...+2^{2008}\right)\)

               \(\Rightarrow A⋮3\)

*Ta có: A \(=2^1+2^2+2^3+2^4+...+2^{2010}\)

               \(=2\times\left(1+2+2^2\right)+2^4\times\left(1+2+2^2\right)+...+2^{2008}\times\left(1+2+2^2\right)\)

               \(=\left(1+2+2^2\right)\times\left(2+2^4+2^7+...+2^{2008}\right)\)

               \(=7\times\left(2+2^4+2^7+...+2^{2008}\right)\)

                \(\Rightarrow A⋮7\)

Mình sửa lại đề C 1 chút xíu

*Ta có: C \(=3^1+3^2+3^3+3^4+...+3^{2010}\)

               \(=\left(3+3^2\right)+3^2\times\left(3+3^2\right)+...+3^{2008}\times\left(3+3^2\right)\)

               \(=\left(3+3^2\right)\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=12\times\left(1+3^2+3^3+...+3^{2008}\right)\)

               \(=4\times3\times\left(1+3^2+3^3+...+3^{2008}\right)\)

                \(\Rightarrow C⋮4\)

Các câu khác làm tương tự nhé. Chúc bạn học tốt!

Nguyễn Hải Nam
10 tháng 12 2017 lúc 21:36

Thanks bạn

Đặng Thị Khánh Ly
13 tháng 2 2020 lúc 23:03

Giải: 

A= 2 + 2 mũ 2 + 2 mũ 3 + 2 mũ 4 +....+ 2 mũ 2010

A= (2 + 2 mũ 2) + (2 mũ 3 + 2 mũ 4) +....+ (2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 3) + 2 mũ 3 (1 + 2) + 2 mũ 2009 (1 +2_

A= 2.3 + 2 mũ 3.3 +....+ 2 mũ 2009.3

A= 3.(2 + 2 mũ 3 +....+ 2 mũ 2009) chia hết cho 3

A= (2 + 2 mũ 2 + 2 mũ 3) + (2 mũ 4 + 2 mũ 5 + 2 mũ 6) +....+ (2 mũ 2008 + 2 mũ 2009 + 2 mũ 2010)

A= 2(1 + 2 + 2 mũ 2) + 2 mũ 4(1+ 2 + 2 mũ 2) +...+ 2 mũ 2008.(1 + 2 + 2 mũ 2)

A= 2.7 + 2 mũ 4. 7 +.... + 2 mũ 2008.7

A= 7.(2 + 2 mũ 4 +....+ 2 mũ 22010 chia hết cho 7.

Các câu còn lại làm tương tự như câu a nha bạn!

Khách vãng lai đã xóa
Lê Minh Hiền
Xem chi tiết
Đoàn Đức Hà
16 tháng 12 2020 lúc 11:43

a) \(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2\right)+\left(2^3+2^4\right)+...+\left(2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2\right)+2^3\left(1+2\right)+...+2^{2009}\left(1+2\right)\)

\(A=3\left(2+2^3+...+2^{2009}\right)⋮3\)

\(A=2^1+2^2+2^3+2^4+...+2^{2010}\)

\(A=\left(2^1+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+...+\left(2^{2008}+2^{2009}+2^{2010}\right)\)

\(A=2\left(1+2+2^2\right)+2^4\left(1+2+2^2\right)+...+2^{2008}\left(1+2+2^2\right)\)

\(A=7\left(2^1+2^4+...+2^{2008}\right)⋮7\)

Các ý dưới bạn làm tương tự nhé. 

Khách vãng lai đã xóa
Nguyễn Thị Nguyệt Minh
Xem chi tiết
nguyễn thị hồ
Xem chi tiết
Nguyễn Minh Quang
16 tháng 8 2021 lúc 11:34

\(A=\left(2+2^2\right)+\left(2^3+2^4\right)+..+\left(2^{59}+2^{60}\right)=3.2+3.2^3+3.2^5+..+3.2^{59}\) Vậy A chia hết cho 3

\(A=\left(2+2^2+2^3\right)+\left(2^4+2^5+2^6\right)+..+\left(2^{58}+2^{59}+2^{60}\right)=7.2+7.2^4+..+7.2^{58}\) Vậy A chia hết cho 7

\(A=\left(2+2^2+2^3+2^4\right)+..+\left(2^{57}+2^{58}+2^{59}+2^{60}\right)=2.15+2^5.15+..+2^{57}.15\) Vậy A chia hết cho 15.

\(B=\left(3+3^3+3^5\right)+..+\left(3^{1987}+3^{1989}+3^{1991}\right)=3.91+3^7.91+..+3^{1986}.91\)

mà 91 chia hết cho 13 nên B chia hết cho 13.

\(B=\left(3+3^3+3^5+3^7\right)+..+\left(3^{1985}+3^{1987}+3^{1989}+3^{1991}\right)=3.820+3^9.820+..+3^{1985}.820\)Mà 820 chia hết cho 41 nên B chia hết cho 41.

D : để ý rằng \(11^k\) đều có đuôi là 1 

nên D có đuôi là đuôi của \(1+1+..+1=10\)

Vậy D chia hết cho 5

Khách vãng lai đã xóa
Phạm Gia Bảo
14 tháng 8 lúc 10:15

Dễ mà bn tự làm đi

Võ Thạch Đức Tín
Xem chi tiết
Đại Học Ơi
9 tháng 10 2018 lúc 21:03

a = 2 + 2 mũ 2 + chấm chấm chấm + 2 mũ 39 chia hết cho 35

Rin cute
Xem chi tiết
Tiểu thư cô đơn
14 tháng 10 2015 lúc 17:26

a, 942^60-351^37

​=(942^4)^15-351^37

​=(....6)^15 -351^37

suy ra( 942^4)^15 có tận cùng là 6

​357^37 có tận cùng là 1

​hiệu của 942^60-351^37 có tận cùng là 5

​suy ra 942^60-351^37 chia hết cho 5

Mai Xuân Cường
28 tháng 10 2015 lúc 12:56

a) Ta có: 942^60=(942^4)^15=...6^15=...6

351^37=...1

Suy ra: 942^60-351^37=...5 chia hết cho 5. Vậy 942^60-351^37 chia hết cho 5

b) Làm tương tự câu trên

 

 

Nguyễn Hiền My
2 tháng 2 2016 lúc 15:26

a) Ta có : 94260-35137=(9424)15-35137=(...6)15-35137=(...6)-(...1)=(...5)

vì (...5) có tận cùng là 5 

=> (...5) chia hết cho 5

b) Ta có : 995=(994)(991)=(...1).(...9)=(....9)

               984=(...6)

               973=972.97=(...9)(..7)=(..3)

               962=(....6)

=> (...9)-(...6)+(...3)-(...6)=(...0)

  Vây (....0) chia hết cho cả 2 và 5

 

Phan Tiến Đạt
Xem chi tiết
Tạ Lương Minh Hoàng
28 tháng 12 2015 lúc 19:19

a)116+115=(..................1)+(..................1)=..........................2

Vì có chữ số tận cùng là 2 nên chia hết cho 4

Nhọ Nồi
28 tháng 12 2015 lúc 19:25

Bài này thì chắc phải dùng đồng dư -_-

a) Ta có: 

11 đồng dư với -1 (mod 4) => 115 đồng dư với (-1)5  = -1 (mod 4) => 115 + 1 chia hết cho 4 

=> 116 đồng dư với (-1)6 (mod 4)

=> 116 đồng dư với 1 (mod 4)

=> 116 - 1 chia hết cho 4

=> (116 - 1) + (115 + 1) chia hết cho 4

=> 116 + 115 chia hết cho 4

Yễn Nguyễn
Xem chi tiết
Nguyễn Trọng Khoa
22 tháng 11 2020 lúc 16:28

tao chịch nát lồn crush tao chảy nước

Khách vãng lai đã xóa
Nguyễn Bảo Kiều Vy
Xem chi tiết
Trần Thanh Phương
10 tháng 10 2018 lúc 20:53

\(A=2+2^2+...+2^{59}+2^{60}\)

\(A=2\left(1+2\right)+...+2^{59}\left(1+2\right)\)

\(A=2\cdot3+...+2^{59}\cdot3\)

\(A=3\cdot\left(2+...+2^{59}\right)⋮3\left(đpcm\right)\)

Nguyễn Bảo Kiều Vy
10 tháng 10 2018 lúc 20:57

ĐPCM LÀ GÌ VẬY BẠN?

Edogawa Conan
10 tháng 10 2018 lúc 21:05

Số các số hạng của a là (60-1):1+1=60 số 

ta thấy

a=2+22+23+...+260

a=(2+22)+(23+24)+...+(259+260)

a= 2*(1+2)+23*(1+2)+...259*(1+2)

a=2*3+23*3+...+259*3

a=2*(1+23+...+259)\(⋮\)3

Vậy a\(⋮\)3

k mình nha 

chúc bn hok tốt

^- ^