Thể tích vật thể tròn xoay khi quay hình phẳng H giới hạn bởi các đường y = x 3 , y = 0 , x = 0 , x = 1 quanh trục hoành bằng
A. V = π 4
B. V = 2 π 5
C. V = π 6
D. V = π 7
Thể tích vật thể tròn xoay khi quay hình phẳng (H) giới hạn bởi các đường y = x 3 ; y=0; x=0; x=1 quanh trục hoành bằng
Thể tích vật thể tròn xoay khi quay hình phẳng (H) giới hạn bởi các đường y = x 3 , y = 0 , x = 0 , x = 1 quanh trục hoành bằng
A. V = π 4
B. V = 2 π 5
C. V = π 6
D. V = π 7
Cho hình phẳng (H) giới hạn bởi các đường y = x + 2 , y = x + 2 , x = 1 . Tính thể tích V của vật thể tròn xoay khi quay hình (H) quanh trục hoành.
A. V = 27 π 2
B. V = 9 π 2
C. V = 9 π
D. V = 55 π 6
Cho hình phẳng (H) giới hạn bởi các đường y = x + 2 , y = x + 2 , x = 1 . Tính thể tích V của vật thể tròn xoay khi quay hình (H) quanh trục hoành
A. V = 27 π 2
B. V = 9 π 2
C. V = 9 π
D. V = 55 π 6
Cho hình phẳng (H) giới hạn bởi các đường y = x + 2 , y = x + 2 ; x = 1 . Tính thể tích V của vật thể tròn xoay khi quay hình (H) quanh trục hoành.
Thể tích vật thể tròn xoay khi cho hình phẳng (H) giới hạn bởi các đường y = xlnx; y = 0 ; x = 2 quay quanh trục Ox được tính bởi công thức nào?
A. π ∫ 0 2 x 2 ln 2 xdx
B. π ∫ 1 2 x 2 ln 2 xdx
C. ∫ 0 2 x 2 ln 2 xdx
D. ∫ 1 2 xlnxdx
Thể tích vật thể tròn xoay khi cho hình phẳng (H) giới hạn bởi các đường y = x ln x y = 0 ; x = 2 quay quanh trục Ox được tính bởi công thức nào?
Trong mặt phẳng Oxy, cho hình phẳng (H) giới hạn bởi các đường 4y = x2 và y = x. Thể tích của vật thể tròn xoay khi quay hình (H) quanh trục hoành một vòng bằng
A. 128 30 π
B. 128 15 π
C. 32 15 π
D. 129 30 π
Đáp án B
Phương pháp: Thể tích vật tròn xoay khi quay phần giới hạn bởi y = f(x), y = g(x) và hai đường thẳng x = a, x = b quanh trục Ox
Cách giải:
Phương trình hoành độ giao điểm của 4y = x2 và y = x là:
Tính thể tích V của vật tròn xoay tạo thành khi quay hình phẳng (H) giới hạn bởi các đường y = x 2 ; y = x quanh trục Ox.
A. V = 9 π 10 .
B. V = 3 π 10 .
C. V = π 10 .
D. V = 7 π 10 .