Cho A= 1+3+5+7+.....+n chứng minh A là số chính phương
Cho A=1+3+5+7+...+(2n-1) (n thuộc N*)
Chứng minh rằng A là số chính phương.
số các số hạng là:
(2n-1-1):2+1=n(số)
tổng A là:(2n-1+1)n:2=n.n=n2 là số chính phương
=>A là số chính phương
=>đpcm
Cho A=1+3+5+7+...+(2n-1) (n thuộc N*)
Chứng minh rằng A là số chính phương.
cho A= 1+3+5+7+......+n chứng minh A là số chính phương
Answer:
Ta có: \(A=1+3+5+7+...+n\)
Có số số hạng: \(\frac{n-1}{2}+1=\frac{n-1+2}{2}=\frac{n+1}{2}\)
\(\Rightarrow A=\frac{\left(n+1\right).\frac{n+1}{2}}{2}=\frac{\left(n+1\right).\left(n+1\right)}{2}:2=\frac{\left(n+1\right)^2}{2}.\frac{1}{2}=\frac{\left(n+1\right)^2}{2^2}=\left(\frac{n+1}{2}\right)^2\)
Vậy A là số chính phương
Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
Ta có : \(1+3+5+...+n\)
\(=\dfrac{\left(\dfrac{n-1}{2}+1\right)\cdot\left(n+1\right)}{2}=\dfrac{\left(n+1\right)^2}{4}=\left(\dfrac{n+1}{2}\right)^2\) là số chính phương.
https://olm.vn/hoi-dap/detail/10723222015.html vào link này nhé
Bài: Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
Giúp với !!!
Vì n là số lẻ n=2k-1
Số số hạng là (2k-1-1):2+1=k-1+1=k(số)
Tổng là \(\dfrac{\left(2k-1+1\right)\cdot k}{2}=k^2\)
Bài 1: Chứng minh một số tự nhiên gôm 27 chữ số 3 và 49 chứ số 7 đều chính phương
Bài 2: Chứng minh
A=12+22+32+...+562 không là số chính phương
B=1+3+5+7+...+n là số chính phương
Bài 3: Tìm hai số tự nhiên k và n sao cho k2=2006+n2
Cho A= 1+3+5+.....+ ( 2n+1) (x thuộc N).Chứng Minh Rằng A là số chính phương
số các số của A là:
(2n+1-1):2+1=n+1(số)
tổng A là:
(2n+1+1)(n+1):2=(n+1)2 là số chính phương
=>đpcm