Cho f(x) là hàm số chẵn, liên tục trên đoạn [-1;1] và ∫ - 1 1 f x d x = 4 . Kết quả I = ∫ - 1 1 f x 1 + e x d x bằng:
A. I = 8
B. I = 4
C. I = 2
D. I = 1 4
Giả sử hàm số f(x) liên tục trên đoạn [-a; a]. Chứng minh rằng:
(1) : nếu f là hàm số chẵn
(2): nếu f là hàm số lẻ.
Áp dụng để tính:
Giả sử hàm số f(x) là hàm số chẵn trên đoạn [-a; a], ta có:
Đổi biến x = - t đối với tích phân
Ta được:
Vậy
Trường hợp sau chứng minh tương tự. Áp dụng:
Vì
là hàm số lẻ trên đoạn [-2; 2] nên
Cho f(x) là hàm số chẵn, liên tục trên đoạn - 1 ; 1 và ∫ - 1 1 f ( x ) d x = 4 . Kết quả I = ∫ - 1 1 f ( x ) 1 + e x d x bằng:
Cho hàm số y=f(x) là hàm số chẵn, liên tục trên đoạn [-1;1] và thỏa mãn ∫ 0 1 2 f ( x ) d x = 3 , ∫ 1 4 1 2 f ( 2 x ) d x = 1 . Tính I= ∫ - π 2 0 cos x f ( sin x ) d x
Cho hàm số y = f(x) là hàm số chẵn, liên tục trên đoạn [-1;1] và thỏa mãn ∫ 0 1 2 f x d x = 3 , ∫ 1 4 1 2 f 2 x d x = 10 . Tính I = ∫ - π 2 0 cos x f sin x d x
A. I = 7
B. I = 23
C. I = 13
D. I = 8
Chọn B.
Phương pháp : Sử dụng phương pháp đổi biến.
Cách giải : Ta có :
Cho hàm số y = f(x) là hàm số chẵn và liên tục trên đoạn - π ; π thỏa mãn ∫ 0 π f x d x = 2018 . Tích phân ∫ - π π f x 2018 x + 1 d x bằng
A. 2018
B. 4036
C. 0
D. 1 2018
Cho f(x) là hàm số chẵn, liên tục trên ℝ thỏa mãn ∫ 0 1 f x d x = 2018 và g(x) là hàm số liên tục trên ℝ thỏa mãn g x + g − x = 1 , ∀ x ∈ ℝ . Tính tích phân I = ∫ − 1 1 f x . g x d x
A. I = 2018
B. I = 1009 2
C. I = 4036
D. I = 1008
Cho hàm số y = f(x) là hàm số chẵn, liên tục trên đoạn [-1;1] và thỏa mãn ∫ 0 1 2 f ( x ) d x = 3 ; ∫ 1 4 1 2 f ( 2 x ) d x = 10 . Tính ∫ - π 2 0 cos f ( sin x ) d x
A. I = 7
B. I = 23
C. I = 13
D. I = 8
Giả sử hàm số f(x) liên tục trên đoạn [-a; a]. Chứng minh rằng:
∫ - a a f x d x = 2 ∫ 0 a f x d x 1 0 2
(1) : nếu f là hàm số chẵn
(2): nếu f là hàm số lẻ.
Áp dụng để tính: ∫ - 2 2 ln x + 1 + x 2 d x
Giả sử hàm số f(x) là hàm số chẵn trên đoạn [-a; a], ta có:
Đổi biến x = - t đối với tích phân
Ta được:
Vậy
Trường hợp sau chứng minh tương tự. Áp dụng:
Vì
là hàm số lẻ trên đoạn [-2; 2] nên
Cho f(x) là hàm số chẵn, liên tục trên R thỏa mãn ∫ 0 1 f ( x ) d x = 2018 và g(x) là hàm số liên tục trên R thỏa mãn g ( x ) + g ( - x ) = 1 Tính tích phân I = ∫ - 1 1 f ( x ) . g ( x ) d x
A. I = 2018
B. I = 504,5
C. I =4036
D. I = 1008