Cho hình chóp S.ABC có S A ⊥ ( A B C ) , tam giác ABC vuông ở B. AH là đường cao của ∆ S A B . Tìm khẳng định sai.
Cho hình chóp S.ABC có S A ⊥ A B C , tam giác ABC vuông ở B. AH là đường cao của tam giác SAB. Tìm khẳng định sai
A. S A ⊥ B C
B. A H ⊥ A C
C. A H ⊥ S C
D. A H ⊥ B C
Cho hình chóp S.ABC có đáy ABC là tam giác vuông tại B, đỉnh S cách đều các điểm A,B,C. Biết AC = 2a,BC = a; góc giữa đường thẳng SB và mặt đáy (ABC) bằng 60 o . Tính theo a thể tích V của khối chóp S.ABC?
A. V = a 6 3 4 .
B. V = a 6 3 6 .
C. V = a 3 2 .
D. V = a 6 3 12 .
Đáp án C.
Hướng dẫn giải: Gọi H là trung điểm AC.
Do tam giác ABC vuông tại B nên H là tâm đường tròn ngoại tiếp tam giác ABC.
Đỉnh S cách đều các điểm A, B,C nên hình chiếu của S trên mặt đáy (ABC) trùng với tâm đường tròn ngoại tiếp tam giác ABC
suy ra S H ⊥ ( A B C )
Tam giác vuông SBH, có
Tam giác vuông ABC ,
có A B = A C 2 - B C 2 = a 3
Diện tích tam giác vuông
S ∆ A B C = 1 2 B A . B C = a 3 2 2
Vậy V S . A B C = 1 3 S ∆ A B C . S H = a 3 2
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S trên đáy là điểm H trên cạnh AC sao cho A H = 2 3 A C đường thẳng SC tạo với mặt phẳng đáy một góc 60 0 . Tính thể tích V của khối chóp S.ABC.
A. V = a 3 8
B. V = a 3 6
C. V = a 3 12
D. V = a 3 18
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S trên đáy là điểm H trên cạnh AC sao cho A H = 2 3 A C , đường thẳng SB tạo với mặt phẳng đáy một góc 45 0 . Tính thể tích V của khối chóp S.ABC.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S trên đáy là điểm H trên cạnh AC sao cho A H = 2 3 A C đường thẳng SC tạo với mặt phẳng đáy một góc 60 0 . Tính thể tích V của khối chóp S.ABC.
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh a, hình chiếu vuông góc của đỉnh S trên đáy là điểm H trên cạnh AC sao cho A H = 2 3 A C đường thẳng SB tạo với mặt phẳng đáy một góc 45 ° . Tính thể tích V của khối chóp S.ABC.
A. V = a 3 15 36
B. V = a 3 21 36
C. V = a 3 3 18
D. V = a 3 3 36
Cho hình chóp S.ABC có SA ⊥ ( A B C ) và tam giác ABC vuông tại B, AH là đường cao của tam giác SAB . Khẳng định nào sau đây sai
Cho hình chóp S.ABC có S A ⊥ A B C và tam giác ABC vuông tại B, AH là đường cao của tam giác SAB . Khẳng định nào sau đây sai
A. S A ⊥ B C
B. A H ⊥ A C
C. A H ⊥ S C
D. A H ⊥ B C
Đáp án B
Ta có B C ⊥ S A B C ⊥ A B ⇒ B C ⊥ S A B ⇒ A H ⊥ B C
LẠI CÓ A H ⊥ S B ⇒ A H ⊥ S B C
Các ý A, C, D đúng
Cho hình chóp S.ABCD có tam giác ABC cân tại A, cạnh bên là a. Biết rằng khoảng cách từ đỉnh S tới mặt đáy (ABC) bằng hai lần đường cao kẻ từ đỉnh A của tam giác ABC đồng thời các vuông tại B và C. Tìm giá trị nhỏ nhất của bán kính mặt cầu ngoại tiếp tứ diện S.ABC