Cho số phức z = (2+i)(1-i) + 1 +2i. Mô-đun của số phức z là
A. 2 2
B. 4 2
C. 17
D. 2 5
Cho số phức z thỏa mãn ( 2 + 3 i ) z - ( 1 + 2 i ) z ¯ = 7 - i . Tìm mô đun của z.
A. z =1
B. z =2
C. z = 3
D. z = 5
Đáp án D
Phương pháp:
Đặt z=a+bi, giải phương trình để tìm a, b
Cách giải:
Cho số phức z thỏa mãn (2+3i)z - (1+2i) z = 7 - i. Tìm mô đun của z
A. |z| = 1
B. |z| = 2
C. |z| = 3
D. |z| = 5
Tìm mô đun của số phức z biết 2 z - 1 1 + i + z ¯ ‐ 1 1 - i = 2 - 2 i .
A. 1 9
B. 2 3
C. 2 9
D. 1 3
Tính mô đun của số phức z, biết (1-2i)z + 2 - i = -12i
A. 5
B. 7
C. 1 5
D. 2 2
Cho số phức z=(1-2i)^2 . Tính mô đun của số phức 1/z
A. .
B. .
C. .
D. .
Cho số phức z thỏa mãn hệ thức: 2 - i 1 + i + z ¯ = 4 - 2 i . Tính mô-đun của z.
A. 3.
B. 4.
C. 8
D. 10
Cho hai số phức z = 5 + 2 i v à z ' = 1 - i . Tính mô-đun của số phức w = z - z '
A. 5.
B. 3 5
C. 17
D. 37
Chọn đáp án A
Ta có w = z - z ' = 4 + 3 i
⇒ w = 4 2 + 3 2 = 5
Cho hai số phức z = 5 + 2 i và z ' = 1 - i . Tính mô-đun của số phức w = z - z '
A. 7(cm)
B. 3(cm)
C. 6(cm)
D. 2(cm)
Chọn đáp án B
Gọi các kích thước của khối hộp là a (cm), b(cm), c (cm) với a, b, c là các số nguyên dương.
Từ giả thiết ta có
Lại có 9 = b + c ≥ 2 b c ⇒ b c ≤ 81 4
Mà b, c là các số nguyên dương nên b c ≤ 20
Từ b +c =9
⇒ trong hai số b, c có 1 số lẻ và 1 số chẵn ⇒ bc chẵn.
Từ a = 42 b c và a nguyên dương nên bc là ước nguyên dương của 42.
Nếu bc =6 thì b, c là nghiệm của phương trình X 2 - 9 X + 6 = 0 (loại vì nghiệm của phương trình này không là số nguyên).
Nếu bc =14 thì b, c là nghiệm của phương trình
⇒ b c = 14 thỏa mãn. Vậy chiều cao của khối hộp là a = 42 b c = 3 c m
Cho số phức z thỏa mãn điều kiện 1 + i z - i + 2 z = 2 i . Mô đun của số phức là w = z - 2 z + 1 z 2
A. 10
B. 8
C. - 10
D. - 8