Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Linh An
Xem chi tiết
Mai Thanh Hải
Xem chi tiết
Hoàng Danh Thái
Xem chi tiết
CÔNG CHÚA THẤT LẠC
25 tháng 12 2016 lúc 14:40

an = n(n + 1) (n + 2) (n + 3) + 1

= (n2 + 3n) (n2 + 3n + 2) + 1

= (n2 + 3n)2 + 2(n2 + 3n) + 1

= (n2 + 3n + 1)2

Với n là số tự nhiên thì n2 + 3n + 1 cũng là số tự nhiên, theo định nghĩa, an là số chính phương.

CÔNG CHÚA THẤT LẠC
25 tháng 12 2016 lúc 14:41

bua nha ,  theo y hiu 

nguyễn thị yến nhi
Xem chi tiết
Nguyễn Lê Phước Thịnh
13 tháng 7 2023 lúc 11:38

Giả sử 1^3+2^3+...+n^3=(1+2+...+n)^2(1)

Khi n=1 thì ta sẽ có 1^3=1^2(đúng)

Giả sử (1) đúng khi n=k

Khi n=2 thì ta sẽ có 1^3+2^3=9=(1+2)^2

Ta sẽ cần chứng minh (1) đúng khi n=k+1

1^3+2^3+...+n^3

=1^3+2^3+...+k^3+(k+1)^3

=(1+2+3+...+k)^2+(k+1)^3

Xét biểu thức (k+1)^2+2(k+1)(1+2+...+k)

=(k+1)^2+2*(k+1)*k*(k+1)/2

=(k+1)^2*(1+k)=(k+1)^3

=>1^3+2^3+...+(k+1)^3

loading...

=>ĐPCM

JakiNatsumi
Xem chi tiết
Trí Tiên亗
14 tháng 8 2020 lúc 12:40

Đề bài : Chứng minh rằng tổng lập phương của các số tự nhiên liên tiếp từ 1 đến n bằng bình phương của tổng từ 1 đến n ( n tự nhiên ). Hay ta cần chứng minh : \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) (*)

Lời giải : 

+) Xét \(n=1\) thì ta có : \(1^3=1^2\) ( đúng ) 

Suy ra (*) đúng với \(n=1\) (1)

+) Xét \(n=2\) ta có : \(1^3+2^3=1+8=9\)\(\left(1+2\right)^2=3^2=9\)

\(\Rightarrow1^3+2^3=\left(1+2\right)^2\) ( đúng ). Nên (*) đúng với \(n=2\) (2)

+) Giả sử (*) đúng với \(n=k\). Tức là : \(1^3+2^3+3^3+....+k^3=\left(1+2+...+k\right)^2\).

Ta cần chứng minh \(n=k+1\) cũng đúng với (*). Thật vậy , ta có :

\(1^3+2^3+3^3+.....+\left(k+1\right)^3\)

\(=1^3+2^3+....+k^3+\left(k+1\right)^3\)

\(=\left(1+2+3+....+k\right)^2+\left(k+1\right)^3\)

Xét biểu thức \(\left(k+1\right)^2+2.\left(k+1\right).\left(1+2+3+....+k\right)\)

\(=\left(k+1\right)^2+2.\left(k+1\right)\cdot\frac{\left(k+1\right).k}{2}\)

\(=\left(k+1\right)^2+\left(k+1\right)^2.k=\left(k+1\right)^3\)

Do đó \(1^3+2^3+....+\left(k+1\right)^3\)

\(=\left(1+2+3+....+k\right)^2+2.\left(k+1\right)\left(1+2+....+k\right)+\left(k+1\right)^2\)

\(=\left(1+2+3+....+k+k+1\right)^2\)

Vậy (*) đúng với \(n=k+1\) (3)

Từ (1) (2) và (3) suy ra \(1^3+2^3+3^3+4^3+....+n^3=\left(1+2+....+n\right)^2\) với mọi \(n\in N\).

Khách vãng lai đã xóa
Trần Thị Thảo Nhung
Xem chi tiết
stella quynh
Xem chi tiết
Vũ Mạnh Toàn
Xem chi tiết
Lê Phương Trà
Xem chi tiết
✰๖ۣۜŠɦαɗøω✰
17 tháng 3 2020 lúc 6:51

Tham khảo đề bài và cách làm nha bạn !

Đề bài : chứng minh số 1^3+2^3+3^3+...+10^3 là số chính phương . 

Giải

Ta có : 13 + 23 + 33 + ... + 103= 102 . (10 + 1 ) \(⋮\) 4 = 4. 52 .112\(⋮\)4 = 52 . 112 = (5.11 )2= 552 là số chính phương

Khách vãng lai đã xóa

\(1^3+2^3+3^3+...+2016^3\)

\(=2016^2.\left(2016+1\right)^2\)

\(=2016^2.2017^2\)

\(=\left(2016.2017\right)^2\)   là số chính phuong

ti.k nhanh nha bn

Khách vãng lai đã xóa