cho a+b+c=1/a+1/b+1/c,abc=1.tính m=(a^2011-1)(b^3-1)(c^39-1)
Giải hộ mình với
1.n^2(n^2-1) chia hết cho12
2.Cho 3 số a,b,c thoả mãn abc=1 và a+b+c=1/a+1/b+1/c
tính giá trị của M=(a^2011-1)(b^2012-1)(c^2013-1)
1) n²(n²-1)
* vì n² chia 3 dư 0 hoặc 1 nên n² và n²-1 có một số chia hết cho 3
=> n²(n²-1) chia hết cho 3
* n² chia 4 dư 0 hoặc 1 nên n²(n²-1) có một số chia hết cho 4
=> n²(n²-1) chia hết cho 4
vì 3 và 4 là hai số nguyên tố cùng nhau nên A = n²(n²-1) chia hết cho 3.4 = 12
Cho các số a b c , , thỏa mãn abc 0 và 1 1 1 1 3 a b b c c a a b c c a b . Tính giá trị của biểu thức S a b c 2011.
cho 3 số a,b,c khác o thỏa mãn 1/a+1/b+1/c=1/(a+b+c) Tinh gtbt M=(a^3+b^3)(b^7+c^7)(a^2011+b^2011)
bạn khai thác gt ta đc : (b+c)(a+b)(a+c)=0
b=-c
a=-b
a=-1
M=(a^3+b^3)(b^7+c^7)(a^2011+|c^2011)
vì
ta có 3 trường hợp
b=-c nên (b^7+c^7=0)
a=-b nên (a^3+b^3)=0
a=-1nên (a^2011+b^2011)=0
M=0
Cho a+b+c = 2011 và 1/(a+b)+1/(a+c)+1/(b+c)=1/2011
Tính S=a/(b+c)+b/(a+c)+c/(a+b)
lay ong di qua lay ba di lai cho xin may tick
Cho a,b,c là ba số t/m a+b+c=1 và \(a^3+b^3+c^3=1 \). CM \(a^{2011}+b^{2011}+c^{2011}=1\)
a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a3 +1/b3 +1/c3 =
3/abc
Cập nhật: a/ Cho abc khác 0 và a+b+c=1/a+1/b+1/c. C/m b(a^2-bc)(1-ac)=a(1-bc)(b^2-ac)
b/ Cho abc khác 0 và (a+b+c)2 = a2+b2+c2. C/m 1/a^3 +1/b^3 +1/c^3 =
3/abc
cho a, b, c thỏa mãn đồng thời : a+b +c=1 và a3+b3+c3 =1
hãy tính tổng :P= a2011+b2011+c2011
\(\hept{\begin{cases}a+b+c=1\left(1\right)\\a^3+b^3+c^3=1\left(2\right)\end{cases}\Leftrightarrow\hept{\begin{cases}a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(a+c\right)=1\\a^3+b^3+c^3=1\end{cases}}}\)
\(\Rightarrow\left(a+b\right)\left(b+c\right)\left(a+c\right)=0\)
\(\hept{\begin{cases}a+b=0\\a+c=0\\b+c=0\end{cases}}\)dấu "{" là dấu hoặc nhé hàm f(x) không có "[" ba(*)
(*) và (1)\(\Rightarrow P=1\)
Bài 1: Cho a,b,c >0 t/m: abc=1
CMR: \(\dfrac{1}{a^3+b^3+1}+\dfrac{1}{b^3+c^3+1}+\dfrac{1}{c^3+a^3+1}\le1\)
Bài 2: Cho a,b,c >0 t/m a+b+c=1
CMR: \(\dfrac{1+a}{1-a}+\dfrac{1+b}{1-b}+\dfrac{1+c}{1-c}\ge6\)
Bài 3: Cho a,b,c >0 t/m abc=1
CMR: \(\dfrac{ab}{a^4+b^4+ab}+\dfrac{bc}{b^4+c^4+bc}+\dfrac{ac}{c^4+a^4+ac}\le1\)
Cho a,b,c khác 0 và a+b+c khác 0 thỏa mãn\(\frac{1}{a}+\frac{1}{b}+\frac{1}{c}=\frac{1}{a+b+c}\). Chứng minh rằng \(\frac{1}{a^{2011}}+\frac{1}{b^{2011}}+\frac{1}{c^{2011}}=\frac{1}{a^{2011}+b^{2011}+c^{2011}}\)