Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Sách Giáo Khoa
Xem chi tiết
Hoang Hung Quan
29 tháng 4 2017 lúc 23:16

Giải:

a) Hình vẽ:

A D B H K C

Xét hai tam giác vuông \(AHD\)\(AKB\) ta có:

\(AD=AB\) (cạnh hình thoi)

\(\widehat{D}=\widehat{B}\) (hai góc đối hình thoi)

Do đó: \(\Delta AHD=\Delta AKB\) (cạnh huyền - góc nhọn)

\(\Rightarrow AH=AK\) (Đpcm)

b) Hình vẽ:

A D B H K C 1 2

Cách 1: Ta có: \(\Delta AHD=\Delta AKB\left(g.c.g\right)\)

\(\Rightarrow AD=AK\)

Hình bình hành \(ABCD\) có hai cạnh kề bằng nhau nên là hình thoi (Đpcm)

Cách 2: Ta có: \(\Delta AHC=\Delta AKC\) (cạnh huyền - cạnh góc vuông)

\(\Rightarrow\widehat{C_1}=\widehat{C_2}\)

Hình bình hành \(ABCD\) có một đường chéo là phân giác của một góc nên là hình thoi (Đpcm)

Nguyen Thuy Hoa
30 tháng 6 2017 lúc 14:02

Hình thoi

the
Xem chi tiết
thu trang
4 tháng 11 2016 lúc 19:54
a,xét 2 tan giác vuông ABH và AKD có: ^H=^K=90ĐỘ ab=ad(GT) ^B=^D(T/C hình thoi) =>tam giác AHB=tam giác AKD( cạnh huyền-góc nhọn) =>AH=AK b,ta có:^a1+^a2=90độ (tổng 2 góc nhọn trong tam giác vuông) ^a2+^b=90độ(như trên) mà ^d=^b( 2 góc đối) =>^a1=^a2 xét tam giác ADH và ABK có: ^a1=^a2(cmt) AH=AK(gt) ^h=^k=90độ =>tam giác ADH=ABK(g.c.g)=>AD=AB(tương ứng) -hình bình hành có 2 cạnh liên tiếp AD=AB =>ABCD là hình thoi =>
Võ Anh Quân
21 tháng 11 2017 lúc 20:39

A B C D H K

xét \(\Delta\)ACK và ABH có 

AB=AC(tc hình thoi)

\(\widehat{AKC}=\widehat{AHB}=90^o\)

\(\widehat{B}=\widehat{C}\)

theo trường hợp cạnh huyền góc nhọn

=>AH=AK (2 cạnh tương ứng)

b)
A B C D H K

xét \(\Delta\)AKDvà \(\Delta\)AHB

\(\widehat{AHB}=\widehat{AK\text{D}}=90^o\)

AH=AK(gt)

\(\widehat{B}=\widehat{D}\)(tính chất HBH)

=>AB=AD(2 cạnh tương ứng)

ABCD là hình thoi vì là HBH có 2 cạnh kề bằng nhau

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
27 tháng 12 2019 lúc 13:21

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Xét hai tam giác vuông AHC và AKC, ta có:

∠ (AHC) = ∠ (AKC) = 90 0

AH = AK (gt)

AC cạnh huyền chung

Suy ra: ∆ AHC = AKC (cạnh huyền- cạnh góc vuông)

⇒  ∠ (ACH) =  ∠ (ACK) hay  ∠ (ACB) =  ∠ (ACD)

⇒ CA là tia phân giác  ∠ (BCD)

Hình bình hành ABCD có đường chéo CA là đường phân giác nên là hình thoi.

Phùng Jang Mi
Xem chi tiết
Nguyễn Thùy Linh 195d
12 tháng 11 2017 lúc 20:06

Bài này có gì đâu em ! Anh làm nhé !

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

NTN vlogs
31 tháng 12 2018 lúc 7:14

Chuyển vế cái cần chứng minh ta được 

1/AB^2 - 1/AE^2 =1/4AF^2

hay ( AE^2 - AB^2)/AB^2.AE^2 = 1/4AF^2

hay BE^2/ 4BC^2.AE^2 = 1/AF^2

Nhân chéo hai vế ta có : BC.AE = BE.AF hay là BC/AF = BE/AE

kiều văn sơn
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 2 2023 lúc 23:44

Xét ΔAHD vuông tại H và ΔAKB vuông tại K có

AH=AK

góc HAD=góc KAB

=>ΔAHD=ΔAKB

=>AD=AB

=>ABCD là hình thoi

Vũ Hue
Xem chi tiết
Nguyễn Lê Phước Thịnh
23 tháng 10 2023 lúc 18:28

Sửa đề: Từ A,C hạ AH,CK lần lượt vuông góc với BD

Xét ΔAHD vuông tại H và ΔCKB vuông tại K có

AD=CB

\(\widehat{ADH}=\widehat{CBK}\)

Do đó: ΔAHD=ΔCKB

=>AH=CK

AH\(\perp\)BD

CK\(\perp\)BD

Do đó: AH//CK

Xét tứ giác AHCK có

AH//CK

AH=CK

Do đó: AHCK là hình bình hành

a
Xem chi tiết
b
Xem chi tiết
zZz Cool Kid_new zZz
9 tháng 3 2020 lúc 14:22

sollution

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 1 2019 lúc 15:15

a) Áp dụng tính chất đường trung bình của tam giác cho DABC và DDBC ta sẽ có:

MQ//PN//BC và MQ = PN = 0.5BC ÞMPNQ là hình bình hành.

b) Tương tự ta có QN//MP//AD và QN = MP = 0.5AD.

Nên để MPNQ là hình thoi thì MN ^ PQ khi đó MN ^ CD và trung trực hay trục đối xứng của AB và CD.

Þ hình thang ABCD là hình thang cân