Cho tứ diện đều ABCD cạnh a, tính khoảng cách giữa hai đường thẳng AB và CD
A. a 2 2
B. a 3 2
C. a 3 3
D. a
Cho tứ diện đều ABCD cạnh a, tính khoảng cách giữa hai đường thẳng AB và CD.
A. a 2 2
B. a 3 2
C. a 3 3
D. a
Cho tứ diện đều ABCD cạnh a. Tính khoảng cách giữa hai đường thẳng AB và CD
A. a 2
B. a 2
C. a
D. a 2 2
Cho tứ diện đều ABCD cạnh a, tính khoảng cách giữa hai đường thẳng AB và CD.
A. a 2 2
B. a 3 2
C. a 3 3
D. a
Cho tứ diện đều ABCD có cạnh a. Tính khoảng cách giữa hai đường thẳng AB và CD.
Cho tứ diện đều ABCD có cạnh a. Tính khoảng cách giữa hai đường thẳng AB và CD.
A. a 2
B. a 2 2
C. a 2
D. a
Tứ diện đều ABCD có cạnh bằng a. Tính khoảng cách giữa hai đường thẳng AB và CD
A. a 3
B. a 3 2
C. a 2 2
D. a
Đáp án C
Gọi M, N lần lượt là trung điểm của AB, CD
Ta có: Δ B C D = Δ A C D ⇔ B N = A N ⇒ Δ A B N cân
⇒ M N ⊥ A B
Tương tự, ta chứng minh được M N ⊥ C D ⇒ M N là đoạn vuông chung của AB và
CD.
Xét tam giác ABN có: A N = B N = a 3 2 ; A B = a
M N = A N 2 − A M 2 = A N 2 − A B 2 4 = a 3 2 2 − a 2 4 = a 2 2
Vậy khoảng cách giữa hai đường thẳng AB, CD là: a 2 2
Cho tứ diện đều A B C D cạnh bằng a . Khoảng cách giữa hai đường thẳng A B và C D bằng
A. 3 a 2 .
B. a .
C. a 3 2 .
D. a 2 2 .
Cho tứ diện đều ABCD có tất cả các cạnh bằng a. Khoảng cách giữa hai đường thẳng AB và CD là:
A. a 2 2
B. a 3 2
C. a 3 2
D. a
Chọn đáp án A
Gọi G là trọng tâm tam giác BCD => AG ⊥ (BCD)
Gọi M là trung điểm CD => BM ⊥ CD
Kẻ MK ⊥ AB (K ∈ AB)
Mặt khác MK ⊥ CD vì CD ⊥ (SBM)
=> MK là đường vuông góc chung.
=> d(AB;CD) = MK
Khi đó M là trung điểm AB
Vậy khoảng cách giữa AB và CD bằng
Cho tứ diện đều ABCD có tất cả các cạnh bằng a. Khoảng cách giữa hai đường thẳng AB và CD là:
A. a 2 2
B. a 3 2
C. a 3 3
D. a