Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi E; M lần lượt là trung điểm của BC và SA. Gọi α là góc tạo bởi EM và (SBD). Khi đó tanα bằng:
A. 1.
B. 2.
C. 2
D. 3
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi E, M lần lượt là trung điểm của các cạnh BC và SA, α là góc tạo bởi đường thẳng EM và mặt phẳng (SBD), tan α bằng:
A. 2 .
B. 3
C. 2
D. 1
Đáp án A
Gọi I,J lần lượt là trung điểm cạnh BC và SA
Suy ra, IJ là hình chiếu vuông góc của EM lên (SBD)
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi E, M lần lượt là trung điểm của các cạnh BC và SA, α là góc tạo bởi đường thẳng EM và mặt phẳng S B D , tan α bằng
A. 2
B. 3
C. 2
D. 1
Đáp án A
Gọi I,J lần lượt là trung điểm cạnh BC và SA
Ta có A C ⊥ S B D , EI // AC, MJ//AC => E I ⊥ ( S B D ) , M J ⊥ ( S B D )
Suy ra, IJ là hình chiếu vuông góc của EM lên (SBD)
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi E, M lần lượt là trung điểm của B C , S A , α là góc tạo bởi đường thẳng EM và mặt phẳng (SBD), tan α bằng:
A. 1
B. 2
C. 2
D. 3
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi E, M lần lượt là trung điểm của BC, SA, α là góc tạo bởi đường thẳng EM và mặt phẳng (SBD), tan α bằng:
A. 1
B. 2
C. 2
D. 3
Đáp án C
Phương pháp:
- Gắn hệ trục tọa độ Oxyz, tìm tọa độ các điểm E, M.
- Sử dụng công thức tính góc giữa đường thẳng và mặt phẳng: sin α = n → . u → n → . u →
Cách giải:
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi M là trung điểm của SD (tham khảo hình vẽ bên). Côsin góc giữa hai đường thẳng BM và AD bằng
A. 3 5 10
B. 3 5 20
C. 55 10
D. 155 20
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi M là trung điểm của SD (tham khảo hình vẽ bên). Côsin góc giữa hai đường thẳng BM và AD bằng
A. 3 5 10 .
B. 3 5 20 .
C. 55 10 .
D. 155 20 .
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh bằng nhau. Gọi M là trung điểm của SD (tham khảo hình vẽ bên). Côsin góc giữa hai đường thẳng BM và AD bằng
A. 3 5 10 .
B. 3 5 20 .
C. 55 10 .
D. 155 20 .
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a, gọi φ là góc giữa hai mặt phẳng S A B v à C S D . Tính cos φ
A. cos φ = 1 2
B. cos φ = 1 6
C. cos φ = 1 3
D. cos φ = 1 4
Cho hình chóp tứ giác đều S.ABCD có tất cả các cạnh đều bằng a, gọi φ là góc giữa hai mặt phẳng (SAB) và (CSD) Tính cos φ
A. cos φ = 1 2
B. cos φ = 1 6
C. cos φ = 1 3
D. cos φ = 1 4
Đáp án C
Giao tuyến giữa (SAB) và (CSD) là đường thằng d qua S và song song AB, CD. Gọi I, J theo thứ tự là trung điểm AB, CD
Suy ra SI, SJ cùng vuông góc với d tại S.
Áp dụng định lý cosin trong tam giác ISJ: