Tìm các số thực a,b,c để phương trình (ẩn z) z 3 + a z 2 + b z + c = 0 nhận z = 1 + i và z = 2 làm nghiệm
Giải hệ phương trình
\(\left\{{}\begin{matrix}-2x+y+z=a\\x-2y+z=b\\x+y-2z=c\end{matrix}\right.\) với x,y,z là các ẩn số
\(\Leftrightarrow\left\{{}\begin{matrix}3x-3y=b-a\\3x-3y=2b+c\\x+y-2z=c\end{matrix}\right.\) (nhân -1 vào 2 vế pt 1 và cộng pt 2, nhân 2 vào 2 vế pt 2 và cộng pt 3)
\(\Leftrightarrow\left\{{}\begin{matrix}0=a+b+c\\x-y=\dfrac{2b+c}{3}\\x+y-2z=c\end{matrix}\right.\)
- Nếu \(a+b+c\ne0\) hệ vô nghiệm
- Nếu \(a+b+c=0\) hệ có vô số nghiệm
Giải hệ phương trình
\(\left\{{}\begin{matrix}-2x+y+z=a\\x-2y+z=b\\x+y-2z=c\end{matrix}\right.\) với x,y,z là các ẩn số
cho a,b,c là các số thực # 0. Tìm các số thực x,y,z #0 thỏa mãn: x*y/a*y+b*x=y*z/b*z+c*y=z*x/c*x+a*z=(x^2+y^2+z^2)/(a^2+b^2+c^2)
Cho a,b,c là các số thực # 0. Tìm x,y,z là số thực # 0 thỏa mãn x*y/a*y+b*x=y*z/b*z+c*y=z*x/c*x+a*z=(x^2+y^2+z^2)/(a^2+b^2+c^2)
Nhờ các bạn giải giùm mình 5 bài luôn nhé! Mình đang cần gấp lắm! Mình cảm ơn.
1. Cho x,y,z khác 0 và (x+y+ z)^2 = x^2+y^2+z^2.
C/m 1/x^3 + 1/y^3 + 1/z^3= 3/x*y*z.
2. Giải phương trình:
x^3 + 3ax^2 + 3(a^2 -bc)x +a^3+b^3 +c^3
(Ẩn x)
3. Tìm nghiệm nguyên của phương trình:
(x+y)^3=(x-2)^3 + (y+2)^3 + 6
4. Tìm nghiệm nguyên dương thỏa mãn cả hai phương trình
x^3 + y^3 + 3xyz= z^3
z^3=(2x+2y)^3
Tìm các số thực b,c để phương trình z2 + bz + c = 0 nhận z = 1+ i làm một nghiệm.
A. b = -2; c = 3
B. b = -1; c = 2
C. b = -2; c = 2
D. b = 2; c = 2
Chọn C.
Theo giả thiết phương trình nhận z = 1+ i làm một nghiệm của phương trình: z2 + bz + c = 0.
Nên ( 1 + i) 2 + b(1 + i) + c = 0
Hay b + c + ( 2 + b) i = 0
Do đó: b + c = 0 và 2 + b = 0
Ta tìm được : b = -2 và c = 2.
Cho a , b , c ∈ R ; a ≠ 0 ; b 2 - 4 a c < 0 . Tìm số nghiệm phức của phương trình a z 2 + b z + c = 0 (với ẩn là z)
A. 3
B. 2
C. 1
D. 0
1, Cho a,b, c là các số thực dương thỏa mãn a + b + c = 5 . Tìm giá trị nhỏ nhất của biểu thức P=a/(ab+5c) + b/(bc+5a)+ c/(ca+5b )
2, giải phương trình : 5/x^2 + 2x/√(x^2+5) =1
3,Cho x,y, z là các số thực dương thỏa mãn x + y + z = 1. CMr : (1-x^2)/(x+yz)+(1-y^2)/(y+xz)+(1-z^2)/(z+xy) ≥6
Giải hệ phương trình với các ẩn số x,y,z sau đây
\(\frac{xz}{ax+by}=\frac{yz}{bz+cy}=\frac{zx}{cx+az}=\frac{x^2+y^2+z^2^{ }}{a^2+b^2+c^2}\)
với a,b,c là các số cho trước