Cho số phức z = a + bi (a,b ∈ ℝ ) thỏa mãn z - 1 z - i v à z - 3 i z + i . Tính P = a + b.
A. P = 7
B. P = -1
C. P = 1
D. P = 2
Cho số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn z + 2 + i - |z|(1+i) = 0 và |z| > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Đáp án D.
Đặt z = a + bi => a + bi
Do |z| > 1 => a = 3, b = 4
Cho số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn z + 2 + i - |z|(i+1) = 0 và |z| > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Cho số phức z = a + bi(a,b ∈ ℝ ) thỏa mãn z + 2 + i - |z|(1+i) = 0 và |z| > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Cho số phức z = a + bi, (a, b ∈ ℝ ) thỏa mãn z + 1 + 3i - |z|i = 0. Tính S = a + 3b
A. S = 7 3
B. S = -5
C. S = 5
D. S = - 7 3
Đáp án B
Ta có:
Với b ⩾ -3 thì (1) tương đương với:
Vậy a + 3b = -5
Cho số phức z = a + bi (a,b ∈ ℝ ) thỏa mãn z + 2i z ¯ = 3 + 3i. Tính z.
A. |z| = 2
B. |z| = 5
C. |z| = 5
D. |z| = 2
Cho số phức z = a + b i a , b ∈ ℝ thỏa mãn z + 2 + i − z 1 + i = 0 , z > 1. Tính P = a + b
A. P = -1
B. P = -5
C. P = 3
D. P = 7
Đáp án D
z + 2 + i − z ( 1 + i ) = 0 ⇔ ( a + b i ) + 2 + i − a 2 + b 2 ( 1 + i ) = 0 ⇔ a + 2 − a 2 + b 2 + ( b + 1 − a 2 + b 2 ) i = 0 ⇒ a + 2 − a 2 + b 2 = 0 b + 1 − a 2 + b 2 = 0 ⇒ a − b + 1 = 0 ⇒ a = b − 1 ⇒ b + 1 − ( b − 1 ) 2 + b 2 = 0 ⇒ 2 b 2 − 2 b + 1 = b + 1 ⇒ b ≥ − 1 b 2 − 4 b = 0 ⇒ b = 0 b = 4 ⇒ a = − 1 ( L ) a = 3 ⇒ P = 4 + 3 = 7
Cho số phức z = a + b i ( a , b ∈ ℝ ) thỏa mãn z - 1 z - i = 1 và z - 3 i z + i = 1 .Tính P=a+b.
A. P=7
B. P=-1
C. P=1
D. P=2
Cho số phức z = a + b i ( a , b ∈ ℝ ) thỏa mãn z + 1 + i z ¯ - i + 3 i = 9 và z ¯ > 2 . Tính P= a+b
A. -3
B. -1
C. 1
D. 2
gdvasghdasbd\
as
sadasdsad
adsadasd
sad']
sad
sad
sa
dsa
dda
Cho số phức z=a+bi (a,b ϵ ℝ) thỏa mãn : z - 2 + 3 i z - = 1 - 9 i . Giá trị của ab+1 là :
A. 1.
B. -2.
C. -1.
D. 0.