cho góc xoy và 1 điểm A cố định nằm trong góc xoy. M thay đổi trên oX và N thay đổi trên Oy sao cho NOM+NAM=180. Kẻ AK vuông gcos với MN. Khi n,m thay đổi thì K chuyển động trên đường nào
cho góc xOy bằng 90 độ trên tia phân giác oz của góc xOy lấy điểm M cố định, một đường thẳng đi qua M cố định một đường thẳng qua M cắt Ox,Oy lần lượt tại A và B, chứng minh q=1/OA+1/OB không đổi khi AB thay đổi
cho góc xOy =120 dộ.và một điểm A cố định trên tia phân giác của góc xOy, 1 đường thẳng denta thay đổi đi qua A cắt Ox; Oy lần lượt tại B và C.chứng minh:\(\frac{1}{OB}+\frac{1}{OC}\)không đổi khi denta thay đổi
Trong mặt phẳng cho góc xOy và một điểm A cố định. Một đường tròn \(\omega\) đi qua O và A cắt tại các tia Ox, Oy theo thứ tự tại M, N. Chứng minh rằng khi \(\omega\) thay đổi, trung điểm MN luôn nằm trên một đường thẳng cố định
Gọi \(\overrightarrow{u},\overrightarrow{v}\) theo thứ tự là vec tơ chỉ phương đơn vị của các tia Ox, Oy, tương ứng cùng hướng với các tia Ox, Oy gọi I là tâm của \(\omega\). Chọn O làm gốc vec tơ điểm và với mỗi điểm X của mặt phẳng, ký hiệu \(\overrightarrow{x}\) để chỉ vec tơ \(\overrightarrow{OX}\). Trung trực OA cắt các đường thẳng \(d_1,d_2\) theo thứ tự tại B, C.
Khi đó B, C cố định và do I nằm trên đường thẳng BC nên \(\overrightarrow{i}=\alpha\overrightarrow{b}+\left(1-\alpha\right)\overrightarrow{c}\)
Mặt khác , theo định lí chiếu ta có :
\(\overrightarrow{m}=2\left(\overrightarrow{i}.\overrightarrow{u}\right).\overrightarrow{u}\) và \(\overrightarrow{n}=2\left(\overrightarrow{i}.\overrightarrow{v}\right).\overrightarrow{v}\)
Gọi P là trung điểm MN. Suy ra \(2\overrightarrow{p}=\overrightarrow{m}.\overrightarrow{n}\). Bởi vậy, với \(b=OB,c=OC\) và \(t=\cos<\left(\overrightarrow{u}\overrightarrow{v}\right)\) thì b, c, t là các hằng số và :
\(\overrightarrow{p}=\left[\alpha.\overrightarrow{b}\overrightarrow{u}+\left(1-\alpha\right).\overrightarrow{c}.\overrightarrow{u}\right].\overrightarrow{u}+\left[\alpha.\overrightarrow{b}\overrightarrow{v}+\left(1-\alpha\right).\overrightarrow{c}.\overrightarrow{v}\right].\overrightarrow{v}\)
\(=\alpha.b\left(\overrightarrow{u}+t\overrightarrow{v}\right)+\left(1-\alpha\right).c\left(t\overrightarrow{u}+\overrightarrow{v}\right)\)
\(=\alpha\overrightarrow{x}+\left(1-\alpha\right)\overrightarrow{y}\)
Trong đó \(\overrightarrow{x}=\overrightarrow{OX}=b\left(\overrightarrow{u}+t\overrightarrow{v}\right)\) và \(\overrightarrow{y}=\overrightarrow{OY}=c\left(t\overrightarrow{u}+\overrightarrow{v}\right)\) là các vec tơ cố định
Suy ra P luôn nằm trên đường thẳng XY cố định khi \(\omega\) thay đổi
1/ Cho góc xOy cố định và điểm M cố định ở bên trong góc đó. Hãy dựng qua điểm M 1 đường thẳng d cắt 2 cạnh Ox;Oy lần lượt ở A;B sao cho \({1 \over MA}\)+\( {1 \over MB}\) đạt GTLN
2/ Cho góc xOy vuông. Trên Ox;Oy lần lượt lấy A:B sao cho OA=OB. M là điểm bất kì trên AB. Dựng (O1) đi qua M và tiếp xúc với Ox tại A. Dựng (O2) đi qua M và tiếp xúc với Oy tại B.(O1) cắt (O2) tại điểm thứ hai N. CMR:
a. MN đi qua 1 điểm cố định
b. N nằm trên 1 cung tròn cố định khi M thay đổi trên AB
c. Xác định MN để O1O2 ngắn nhất
3/ Cho hình thoi ABCD có góc A=60 độ. M là 1 điểm trên cạnh BC. AM cắt DC tại N.
a. CM: AD2=BM.DN
b. Đường thẳng DM cắt BN tại E. CM: Tứ giác BECD nội tiếp
c. Coi ABCD cố định. CM: Enằm trên 1 cung cố định
Cho góc vuông xOy và điểm A cố định thuộc Oy (A khác O). D là điểm chuyển động trên Ox. Vẽ hình vuông ABCD nằm trong xOy. Khi D di động trên Ox thì B di động trên đường nào?
Cho \(\widehat{xOy}\) vuông, A cố định trên Ox. M, N thay đổi trên OX và OY sao cho AM = ON. CMR trung điểm I của M chạy trên một đường thẳng cố định.
Làm ơn giúp mình nhanh với ạ, mình đang cần gấp!!
Bài 1: Cho tam giác ABC đều cạnh a, M và N chuyển động trên AB,AC sao cho 1/AM+1/AN=3/a không đổi, chứng minh M,N luôn đi qua 1 điểm cố định.
Bài 2: cho góc xOy , điểm M bất kì nằm trong góc, kẻ đường thẳng đi qua M cắt Ox, Oy tại A và B .gói diện tích tg OAM là S1, OBM là S2 chứng minh 1/S1 + 1/S2 không đổi
Bài 1:
Gọi E là giao điểm của phân giác AD với MN.
Qua E, kẻ đoạn thẳng IJ vuông góc với AD \(\left(I\in AB,J\in AC\right)\)
Gọi H là điểm đối xứng với M qua AD.
Ta thấy rằng \(\widehat{MEI}=\widehat{HEJ}\Rightarrow\widehat{HEJ}=\widehat{JEN}\) hay EJ là phân giác trong góc NEH.
Do \(EJ\perp EA\) nên EA là phân giác ngoài tại đỉnh E của tam giác NEH.
Theo tính chất tia phân giác trong và ngoài của tam giác, ta có:
\(\frac{NJ}{HJ}=\frac{EN}{EH}=\frac{AN}{AH}\Rightarrow\frac{\overline{NJ}}{\overline{NA}}:\frac{\overline{HJ}}{\overline{HA}}=-1\Rightarrow\left(AJNH\right)=-1\)
Áp dụng hệ thức Descartes, ta có \(\frac{2}{AJ}=\frac{1}{AH}+\frac{1}{AN}=\frac{1}{AM}+\frac{1}{AN}=\frac{3}{a}\)
\(\Rightarrow AJ=\frac{2a}{3}\)
Vậy J cố định, mà AD cố định nên IJ cũng cố định. Vậy thì E cũng cố định.
\(AJ=\frac{2a}{3}\Rightarrow AE=\frac{2.AD}{3}\) hay E là trọng tâm tam giác ABC.
Tóm lại MN luôn đi qua trọng tâm tam giác ABC.
giúp em vs CMR với mọi a,b,c ta có (a^2+2)(b^2+2)(c^2+2)>= 3(a+b+c)^2
Cho góc xoy; Một đường thẳng d thay đổi luôn cắt các tia Ox và Oy tại M và N. Biết giá trị của 1/OM + 1/ON là ko đổi khi d thay đổi. Cmr: d luôn đi qua 1 điểm cố định khi nó di chuyển.
M.n chứng minh giùm tui cái. Mai là phải nộp r
Cho góc xOy cố định,trên Ox lấy M và trên Oy lấy N sao cho OM + ON = m không đổi . Chứng minh rằng đường trung trực MN đi qua một điểm có định
trên Ox lấy A , Oy lấy B sao cho OA = OB = m
suy ra M nằm giữa O,A
N giua O,B ( do OM+ON = m suy ra OM ; ON < OA = OB)
lấy M tùy ý trên OA
suy ra điểm N sẽ nằm vị trí sao cho NB = OM
trên OA lấy I là trung điểm
trên OB lấy K là trung điểm
vì giao 2 đường ttrực của MN ở vị trí đac biệt trên nằm trên phân giác góc XOY
suy ra điểm giao đó chính là giao 3 trung trực tam giác OAB ( do tg này cân tại O)
gọi giao 3 đường trung trực là P
suy ra tam giác MIP = NKP (cgc)
suy ra tam giác MNP là tam giác cân suy ra trung trực MN đi qua P cố định (đpcm).
Chúc bạn học tốt!