Trong không gian Oxyz, phương trình mặt phẳng (P) đi qua hai điểm A(1;-7;-8), B(2;-5;-9) sao cho khoảng cách từ điểm M(7;-1;-2) đến (P) lớn nhất có một véctơ pháp tuyến là n → =(a;b;4). Giá trị của tổng a+b là
A. -1.
B. 3
C. 6
D. 2
Trong không gian (Oxyz), cho mặt phẳng (P) đi qua hai điểm A(5;-1;1), B(3;1;-1) và song song với trục Ox, Phương trình của mặt phẳng (P) là:
A. (P):x + y = 0
B. (P): y + z = 0
C. (P): x + z = 0
D. (P): x + y + z = 0.
Trong không gian (Oxyz), cho mặt phẳng (P) đi qua hai điểm A(5;-1;1), B(3;1;-1) và song song với trục Ox, Phương trình của mặt phẳng (P) là:
Trong không gian với hệ tọa độ Oxyz, cho điểm A − 1 ; 2 ; 3 và hai mặt phẳng P : x − 2 = 0 và Q : y − z − 1 = 0 . Viết phương trình mặt phẳng đi qua A và vuông góc với hai mặt phẳng P , Q
A. x + y + z − 5 = 0
B. x + z = 0
C. y + z − 5 = 0
D. x + y + 5 = 0
Đáp án C
Ta có n P → 1 ; 0 ; 0 ; n Q → 0 ; 1 ; − 1 suy ra n → = n P → ; n Q → = 0 ; 1 ; 1
Suy ra phương trình mặt phẳng cần tìm là: y + z − 5 = 0
Trong không gian Oxyz, cho hai điểm A(2;4;1), B(-1;1;3) và mặt phẳng (P): x-3y+2z-5=0. Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P).
A. 2y+3z-10=0
B.2x+3z-11=0
C. 2y+3z-12=0
D. 2y+3z-11=0
Đáp án D
Ta có:
Khi đó:
Suy ra (Q): 2y+3z-11=0
Trong không gian Oxyz, cho hai điểm A(2;4;1); B(–1;1;3) và mặt phẳng (P): x -3y + 2z – 5 = 0. Viết phương trình mặt phẳng (Q) đi qua hai điểm A, B và vuông góc với mặt phẳng (P)
A. (Q): 2y + 3z – 10 = 0
B. (Q): 2x + 3z – 11 = 0
C. (Q): 2y + 3z – 12 = 0
D. (Q): 2y + 3z – 11 = 0
Đáp án D
Ta có: A B → = ( - 3 ; - 2 ; 2 ) ; n ( P ) → = ( 1 ; - 3 ; 2 )
Khi đó: A B → ; n ( P ) → = 0 ; 8 ; 12 ⇒ n ( Q ) → = ( 0 ; 2 ; 3 )
Suy ra (Q): 2y + 3z – 11 = 0
Trong không gian tọa độ Oxyz cho điểm A 1 ; 2 ; 3 và hai mặt phẳng P : x − y = 0 , Q : 2 x + 4 z + 1 = 0 . Phương trình mặt phẳng (R) đi qua A và chứa giao tuyến của hai mặt phẳng (P),(Q) là
A. R : − 2 x + 2 y − z + 3 = 0.
B. R : 2 x − 2 y − z + 3 = 0.
C. R : 2 x + 2 y + 3 z − 17 = 0.
D. R : x - y + 1 = 0.
Đáp án D
Gọi d = P ∩ Q ,d có VTCP là u → .
Khi đó u → = 1 ; − 1 ; 0 , 2 ; 0 ; 4 = − 4 ; − 4 ; 2 = − 2 2 ; 2 ; − 1 .
Mặt phẳng (R) qua A 1 ; 2 ; 3 , có VTCP là 2 ; 2 ; − 1 và đi qua điểm B ( − 1 2 ; − 1 2 ; 0 ) thuộc giao tuyến, (R) có phương trình là R : x − y + 1 = 0.
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua điểm A(2 ;-1 ;3) và song song với mặt phẳng (Q):
A.
B. x - 2y + 3z - 15 = 0
C. 3x - 6y + 2z - 18 = 0
D. 3x - 6y + 2z + 18 = 0
Đáp án C
Phương trình mặt phẳng (Q) viết lại dưới dạng: 3x - 6y + 2z - 6 = 0
Suy ra đáp án B sai. Trong ba đáp án còn lại chỉ có mặt phẳng ở đáp án C đi qua điểm A.
Trong không gian Oxyz, phương trình của mặt phẳng (P) đi qua điểm M(2;6;-3) và vuông góc với hai mặt phẳng (Oxy), (Oyz) là:
A. 2x - 4 = 0
B. y - 6 = 0
C. z + 3 = 0
D. 2x - 6y - 3z - 49 = 0
Đáp án B
Vì (P) vuông góc với hai mặt phẳng (Oxy), (Oyz) và (Oxy) (Oyz) = Oy nên ta có (P) → Oy => n p → = j → = (0; 1; 0)
Từ đó suy ra phương trình của mặt phẳng (P) là: 0(x - 2) + 1(y - 6 ) + 0(z + 3) = 0 ⇔ y - 6 = 0
Trong không gian Oxyz, lập phương trình của mặt phẳng (P) đi qua hai điểm A(1;0;1), B(2;1;3), đồng thời vuông góc với mặt phẳng (Q): x + y - 3z = 0
A. x - y - 1 = 0
B. x + y - 1 = 0
C. x + z - 1 = 0
D. x + y - 3z + 2 = 0
Đáp án A
Từ giả thiết suy ra:
Từ đó suy ra phương trình của mặt phẳng (P) là:
1(x - 1) - 1(y - 0) + 0(z - 1) = 0 ⇔ x - y - 1 = 0
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A 1 ; 0 ; 1 ; B 2 ; 1 ; 2 và mặt phẳng P : x + 2 y + 3 z + 3 = 0 . Phương trình mặt phẳng α đi qua hai điểm A, B và vuông góc với mặt phẳng (P) là:
A. x + 2y - z + 6 = 0
B. x + 2y - 3z + 6 = 0
C. x - 2y + z - 2 = 0
D. x + 2y - 3z + 6 = 0