Tìm tất cả các giá trị thực của m để bất phương trình 2 sinxcosx + cos 2 x sin 2 x + 4 cos 2 x + 1 ≤ m - 1 đúng với mọi x ∈ R .
A. m ≥ - 3 + 17 4 .
B. m ≥ 1 + 17 4
C. m ≤ 1 - 17 4 .
D. m ≤ - 3 + 17 4
Tìm tất cả các giá trị thực của tham số m để bất phương trình mx^2 + (m-1)x +m -1
Tìm tất cả các giá trị thực của tham số m để bất phương trình -2x2 +2(m-2)x+m-2<0 có nghiệm
Tìm tất cả các giá trị thực của tham số m để bất phương trình log 2 5 x - 1 . log 2 2 . 5 x - 2 ≥ m có nghiệm x ≥ 1
A. m ≥ 6
B. m > 6
C. m ≤ 6
D. m < 6
Đáp án C.
Bất phương trình ⇔ log 2 5 x - 1 1 + log 2 5 x - 1 ≥ m
Đặt t = log 2 5 x - 1 , do x ≥ 1 ⇒ t ∈ [ 2 ; + ∞ )
Bất phương trình t 2 + t ≥ m ⇔ f ( t ) ≥ m
Với f ( t ) = t 2 + t , f ' ( t ) = 2 t + 1 > 0 với t ∈ [ 2 ; + ∞ ) nên hàm số f ( t ) đồng biến nên min ( t ) = f ( 2 ) = 6
Do đó theo bài ra để bất phương trình có nghiệm x ≥ 1 thì m ≤ min f ( t ) ⇔ m ≤ 6
Tìm tất cả các giá trị thực của m để bất phương trình ( x 2 - 1 ) ( x - 1 ) x 3 + ( x 2 – x ) 2 ( 2 - m ) + ( x 2 - 1 ) ( x - 1 ) ≥ 0
A. m ≤ 2
B. m ≤ - 1 4
C. m ≤ 6
D. m ≤ 1
Cho bất phương trình 3 + x + 1 - x ≤ m + 1 - x 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để bất phương trình có nghiệm thực.
A. m ≥ 25 4
B. m ≥ 4
C. m ≥ 6
D. m ≥ 7
Tìm tất cả các giá trị thực của tham số m để bất phương trình log2( 5x - 1) .log2)( 2.5x - 2) > m - 1 có nghiệm x ≥ 1?
A. m ≥ 7
B. m > 7
C. m ≤ 7
D. m < 7
Tìm tất cả các giá trị thực của tham số m để bất phương trình ( m + 1 ) x 2 - 2 ( m + 1 ) x + 4 ≥ 0 ( 1 ) có tập nghiệm S = ℝ ?
A. m > - 1
B. - 1 ≤ m ≤ 3
C. - 1 < m ≤ 3
D. - 1 < m < 3
Tìm tất cả các giá trị thực của tham số m để bất phương trình 4 l o g 2 x 2 + log 2 x + m ≥ 0 nghiệm đúng với mọi giá trị x ∈ 1 ; 64
A. m ≤ 0
B. m ≥ 0
C. m < 0
D. m > 0
Tìm tất cả các giá trị thực của tham số m để bất phương trình log 1 2 x - 1 > log 1 2 x 3 + x - m có nghiệm
A. mÎR
B. m < 2
C. m ≤ 2
D. Không tồn tại m
Tìm tất cả các giá trị thực của tham số m để bất phương trình
log 2 5 x − 1 . log 2 2.5 x − 2 ≥ m có tập nghiệm là 1 ; + ∞ ?
A. m > 6
B. m ≤ 6
C. m < 6
D. m ≥ 6