Tìm tất cả các giá trị thực của tham số m để bất phương trình 3 x + 3 + 5 - 3 x ≤ m có nghiệm đúng với mọi x ∈ ( - ∞ ; log 3 5 ]
A. m ≥ 2 2
B. m ≥ 4
C. m ≤ 4
D. m ≤ 2 2
Cho bất phương trình 3 + x + 1 - x ≤ m + 1 - x 2 - 2 x . Tìm tất cả các giá trị thực của tham số m để bất phương trình có nghiệm thực.
A. m ≥ 25 4
B. m ≥ 4
C. m ≥ 6
D. m ≥ 7
Tìm tất cả các giá trị thực của tham số m để bất phương trình 2 x + 3 + 5 - 2 x ≤ m nghiệm đúng với mọi x ∈ - ∞ ; log 2 5
A. m ≥ 4
B. m < 4
C. m ≥ 2 2
D. m < 2 2
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình x - 3 < 0 m - x < 1 vô nghiệm.
A. m < 4
B. m > 4
C. m ≤ 4
D. m ≥ 4
Chọn D
Hệ bất phương trình vô nghiệm khi và chỉ khi m - 1 ≥ 3 hay m ≥ 4
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình 3 ( x - 6 ) < - 3 5 x + m 2 > 7 có nghiệm.
A. m > -11.
B. m ≥ -11.
C. m < -11.
D. m ≤ -11.
Chọn A.
Hệ bất phương trình có nghiệm
⇔ 14 - m < 25 ⇔ -m < 11 ⇔ m > -11
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình
3 ( x - 6 ) < - 3 5 x + m 2 > 7 có nghiệm.
A. m > -11
B. m ≥ -11
C. m < -11
D. m ≤ -11
Chọn A
Hệ bất phương trình có nghiệm
hay 14 - m < 25 hay m > -11
Tìm tất cả các giá trị thực của tham số m để hệ bất phương trình
3 ( x - 6 ) < - 3 5 x + m 2 > 7 có nghiệm.
A. m > -11
B. m ≥ -11
C. m < -11
D. m ≤ -11
Chọn A
Ta có:
Hệ bất phương trình có nghiệm ⇔ 14 - m 5 < 5
Hay 14 - m < 25 tương đương m > -11
Tìm tất cả các giá trị thực của tham số m để bất phương trình 4 x - m . 2 x + 1 + 3 - 2 m ≤ 0 có nghiệm thực
A. m ≥ 2
B. m ≤ 3
C. m ≤ 5
D. m ≥ 1
Đáp án D
Vậy để bất phương trình có nghiệm thực thì m ≥ 1
Tìm tất cả các giá trị thực của tham số m để bất phương trình 4 x − 2 m + 1 2 x − 3 − 2 m > 0 có nghiệm đúng với mọi x ∈ ℝ
A. Với mọi x ∈ ℝ
B. m < − 3 2
C. m ≠ − 2 3
D. m ≤ − 3 2