Trong không gian tọa độ Oxyz, cho điểm A(a;b;c) với a , b , c ∈ ℝ \ 0 . Xét (P) là mặt phẳng thay đổi đi qua điểm A. Khoảng cách lớn nhất từ điểm O đến mặt phẳng (P) bằng
#2H3Y1-1~Trong không gian với hệ tọa độ Oxyz, cho điểm A(-3;2;-1). Tọa độ điểm A' đối xứng với điểm A qua gốc tọa độ O là:
A. A'(3;-2;1)
B. A'(3;2;-1)
C. A'(3;-2;-1)
D. A'(3;2;1).
Đáp án A
Ta có xA' = 2xO-xA = 3; yA' = 2yO-yA = -2; zA' = 2zO-zA=1. Vậy A'(3;-2;1).
Trong không gian với hệ trục tọa độ Oxyz, cho véc-tơ . Tìm tọa độ điểm A.
A. A(-2;3;0)
B. A(-2;0;3)
C. A(0;2;-3)
D. A(0;-2;3).
Trong không gian tọa độ Oxyz, cho điểm M(a;b;c). Tọa độ của vectơ M O → là
Trong không gian tọa độ Oxyz, cho điểm M(a;b;c). Tọa độ của vectơ M O → là
A. (a;b;c)
B. (-a;b;c)
C. (-a;-b;-c)
D. (-a;b;-c)
Trong không gian với hệ tọa độ Oxyz, cho vecto O A → = - 2 i → + 5 k → . Tìm tọa độ điểm A.
A. (-2;-5;0)
B. (5;-2;0)
C. (-2;0;5)
D. (-2;5;0)
Trong không gian với hệ tọa độ Oxyz, cho vecto O A → = - 2 i → + 5 k → . Tìm tọa độ điểm A.
A. (-2;-5;0)
B. (5;-2;0)
C. (-2;0;5)
D. (-2;5;0)
Trong không gian tọa độ Oxyz, cho điểm A(3;-2;5). Hình chiếu vuông góc của điểm A trên mặt phẳng tọa độ (Oxz)
Trong không gian với hệ trục tọa độ Oxyz, cho điểm A(-3;2;-1). Tọa độ điểm A' đối xứng với A qua trục Oy là
A. A'(-3;2;1)
B. A'(3;2;-1)
C. A'(3;2;1)
D. A'(3;-2;-1)
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(5;7;2), B(3;0;4). Tọa độ của là:
A. =(2;7;-2)
B. =(2;7;2)
C. =(8;7;6)
D. =(-2;-7;2).
Trong không gian tọa độ Oxyz, cho điểm M ( a ; b ; c ) . Tọa độ của véc-tơ M O → là