Diện tích hình phẳng giới hạn bởi các đường x=-1, x=2, y=0 và Parabol (P) y = a x 2 + b x + c bằng 15. Biết (P) có đỉnh I(1;2) là điểm cực tiểu. Khi đó a+b-c bằng bao nhiêu?
A. -8
B. -2
C. 14
D. 3
Diện tích hình phẳng giới hạn bởi các đường x=-1; x=2; y=0 và parabol P : y = a x 2 + b x + c bằng 15. Biết (P) có đỉnh I(1;2) là điểm cực tiểu. Tính T=a+b-c
A. T = -8.
B. T = -2.
C. T = 14.
D. T = 3.
Diện tích hình phẳng giới hạn bởi các đường x = − 1 , x = 2 , y = 0 và Parabol ( P ) : y = a x 2 + b x + c bằng 15. Biết (P) có đỉnh I(1;2) là điểm cực tiểu. Khi đó a+b-c bằng bao nhiêu?
A. -8
B. -2
C. 14
D. 3
Tình diện tích hình phẳng giới hạn bởi parabol y = - x 2 và đường thẳng y = - x - 2
A. 2
B. 9 2
C. 1
D. 3 4
Diện tích của hình phẳng giới hạn bởi parabol y = 2 - x 2 và đường thẳng y = - x
A. 9 4
B. 9 2
C. 9
D. 18
Tình diện tích hình phẳng giới hạn bởi parabol y = –x2 và đường thẳng y = –x – 2.
A. 2
B. 9 2
C. 1
D. 3 4
Tính diện tích S của hình phẳng giới hạn bởi đường parabol y = x 3 - 3 x + 2 và đường thẳng y=x-1.
A. S = 3 4
B. S = 2
C. S = 37 14
D. S = 799 300
Diện tích của hình phẳng giới hạn bởi parabol y = 2 - x 2 và đường thẳng y = - x là
A. S = 9 4
B. S = 9 2
C. S = 9
D. S = 18
Chọn B.
Phương pháp: Tìm hoành độ giao điểm và lấy tích phân để tích diện tích.
Cách giải: Phương trình hoành độ giao điểm là:
Cho (H) là hình phẳng giới hạn bởi parabol y = 2 x 2 4 đường cong y = 1 - x 2 4 (với 0 ≤ x ≤ 2 ) và trục hoành (tham khảo hình vẽ bên).
Diện tích của (H) bằng
A. 3 π - 2 12
B. 3 π + 4 2 - 6 12
C. 4 π + 3 2 - 8 12
D. π + 2 - 2 3
Cho (H) là hình phẳng giới hạn bởi parabol y = 2 x 2 4 , đường cong 1 - x 2 4 (với 0 ≤ x ≤ 2 ) và trục hoành (tham khảo hình vẽ bên). Diện tích của (H) bằng
A. 3 π - 2 12
B. 3 π + 4 2 - 6 12
C. 4 π + 3 2 - 8 12
D. π + 2 - 2 3