Tam giác ABC vuông cân tại A. Và tia Ax nằm giữa 2 tia AB, AC. Vẽ BD vuông góc với Ax, CE vuông góc với Ax.
a) c/minh:AD=CE
b) Tìm điều kiện của Ax để BD=CE.
Mình tick 2 lần nhak.
Cho tam giác ABC vuông cân tại A . Vẽ Ax nằm giữa Ab và AC . Vẽ BD vuông góc Ax. Vẽ CE vuông góc Ax.
CM a, AD = CE
b, Tìm điều kiện của tia Ax để BD = CE
Cho △ABC vuông cân tại A và tia Ax nằm giữa hai tai AB,AC. Vẽ BD ⊥ Ax, CE⊥Ax.
a) CMR: AD = CE
b) Tìm điều kiện của tia Ax để BD=CE
a: Xét ΔAEC vuong tại E và ΔBDA vuông tại D có
AC=BA
góc EAC=góc DBA(=90 độ-góc DAB)
=>ΔAEC=ΔBDA
=>AD=CE
b: BD=CE
=>AD=BD
=>Ax là phân giác của góc BAC
Cho tam giác ABC có góc A nhọn, vẽ tia Ax vuông góc với AB ( tia AC nằm giữa 2 tia AB và Ax) và trên đó lấy điểm E sao cho AE = AB. Vẽ tia Ay vuông góc với AC ( tia AB nằm giữa 2 tia Ay và AC) và trên đó lấy điểm F sao cho AF = AC.
a) CM: BF = CE
b) Gọi M, N lần lượt là trung điểm của các đoạn thẳng BF, CE. Kẻ AM, AN. CMR: AM vuông góc với AN
Cho tam giác ABC vuông tại A, đường cao AH. Trên nửa mặt phẳng bờ AB không chứa điểm H, vẽ tia Ax sao cho BAx=BAH. Gọi Ay là tia đối của tia Ax vẽ BD vuông góc với xy và CE vuông góc với xy (D,E thuộc xy). Chứng minh:
a) AC là tia phân giác của HAy
b) BD+CE=BC
c) HD vuông góc với HE
Cho tam giác ABC vuông tại A, đường cao AH. Trên nửa mặt phẳng bờ AB không chứa điểm H, vẽ tia Ax sao cho BAx=BAH. Gọi Ay là tia đối của tia Ax vẽ BD vuông góc với xy và CE vuông góc với xy (D,E thuộc xy). Chứng minh:
a) AC là tia phân giác của HAy
b) BD+CE=BC
c) HD vuông góc với HE
Cho tam giác ABC vuông tại A (AB<AC) có Ax là tia phân giác của góc A. Vẽ BD vuông góc với Ax tại D và CE vuông góc với Ax tại E. Gọi M là trung điểm của BC. Tính các góc của tam giác DME.
Giúp mình với!
Xét \(\Delta\)ABC: ^A=900; M là trung điểm BC => AM=BM=CM
Ax là tia phân giác ^BAC => ^BAD=^CAE=450.
Mà BD vuông góc Ax, CE vuông góc Ax => 2 tam giác BAD và CAE vuông cân tại D và E.
=> DA=DB và EA=EC.
Xét \(\Delta\)AEM=\(\Delta\)CEM (c.c.c) => ^AEM=^CEM (2 góc tương ứng)
=> EM là phân giác ^AEC => ^AEM=^CEM=900/2=450 hay ^DEM=450.
Tương tự: \(\Delta\)AMD=\(\Delta\)BMD (c.c.c) => ^ADM=^BDM (2 góc tương ứng)
Ta có: ^BDM=^BDE+^EDM=900+^EDM => ^ADM=900+^EDM.
Lại có: ^ADM+^EDM=1800 (kề bù). Thay ^ADM=900+^EDM, ta được:
900+^EDM+^EDM=1800 <=> 2.^EDM=900 => ^EDM=450.
Vậy tam giác DME có: ^DEM=450; ^EDM=450 => ^DME=900.
Cho tam giác ABC vuông tại A.Vẽ AH vuông góc Bc.Vẽ các tia Ax và Ay sao cho AB,AC lần lượt là các tia phân giác của các góc HAx và Hay.Vẽ BD vuông góc Ax; CE vuuong góc Ay
a) Tính số đo của góc xAy
b) CM: BD+CE=BC
c) CM: tam giác HDE vuông
Cho tam giác ABC vuông tại A, đường cao AH. Trên nửa mặt phẳng bờ AB không chứa điểm H, vẽ tia Ax sao cho BAx=BAH. Gọi Ay là tia đối của tia Ax vẽ BD vuông góc với xy và CE vuông góc với xy (D,E thuộc xy). Chứng minh:
a) AC là tia phân giác của HAy
b) BD+CE=BC, A là trung điểm của DE
c) HD vuông góc với HE
Cho tam giác ABC vuông tại A, đường cao AH. Trên nửa mặt phẳng bờ AB không chứa điểm H, vẽ tia Ax sao cho BAx=BAH. Gọi Ay là tia đối của tia Ax vẽ BD vuông góc với xy và CE vuông góc với xy (D,E thuộc xy). Chứng minh:
a) AC là tia phân giác của HAy
b) BD+CE=BC, A là trung điểm của DE
c) HD vuông góc với HE
k mik nha bn
a) Vì ^HAB + ^HAC = 90
^HAB + ^HBA = 90 (1)
=> ^^HAC = ^HBA
Ta có: ^CAy + ^BAx = 180 - 90 = 90
mà ^BAx = ^BAH
=> ^HAB + ^CAy = 90 (2)
từ (1) và (2) => ^HBA = ^CAy
<=> ^HAC = ^CAy => Ac là tia phân giác ^HAy
b) xét tam giác AHB = ADB ( cạnh huyền- góc nhọn)
=> BD = HB và AH = AD (3)
Xét tam giác ACE = ACH ( cạnh huyền-góc nhọn)
=> CE = CH và AH = AE (4)
=> BD + CE = BH + CH =BC
Từ (3) và (4) => AE = AD
=> A là trung điểm DE
c) Xét tam giác EHD có AH là đường trung tuyến ứng với một cạnh
mà AH = AE =BC/2
=> tam giác EHD vuông tại H
=> HD vuông góc HE