Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị hàm số với trục tung là
A.
B.
C.
D.
Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị hàm số với trục tung là
A.
B.
C.
D.
Cho hàm số y = x + 2 x + 1 có đồ thị (C). Phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị (C) với trục tung là
A. y = x – 2
B. y = –x + 2
C. y = –x + 1
D. y = –x –2
Cho hàm số y = x + 2 x + 1 C . Phương trình tiếp tuyến với đồ thị hàm số tại giao điểm của đồ thị (C) với trục tung là
A. y = − x + 2
B. y = − x + 1
C. y = x − 2
D. y = − x − 2
Đáp án A
Ta có y ' = − 1 x + 1 2 ; C ∩ O y = 0 ; 2 ⇒ y ' 0 = − 1
Do đó PTTT là: y = − x + 2
Cho hàm số y = f(x) = a x + b c x + d ( a,b,c,d ∈ ℝ , - d c ≠ 0) đồ thị hàm số y= f’(x) như hình vẽ.
Biết đồ thị hàm số y= f(x) cắt trục tung tại điểm có tung độ bằng 3. Tìm phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục hoành ?
A. y = x - 3 x + 1
B. y = x + 3 x - 1
C. y = x + 3 x + 1
D. y = x - 3 x - 1
+ Ta có y ' = f ' ( x ) = a d - b c ( c x + d ) 2 . Từ đồ thị hàm số y= f’(x) ta thấy:
Đồ thị hàm số y= f’(x) có tiệm cận đứng x=1 nên –d/c= 1 hay c= -d
Đồ thị hàm số y= f’(x ) đi qua điểm (2;2)
⇒ a d - b c ( 2 c + d ) 2 = 2 ↔ a d - b c = 2 ( 2 c + d ) 2
Đồ thị hàm số y= f’(x) đi qua điểm (0;2)
⇒ a d - b c d 2 = 2 ↔ a d - b c = 2 d 2
Đồ thị hàm số y=f(x) đi qua điểm (0;3) nên b/d= 3 hay b= 3d
Giải hệ gồm 4 pt này ta được a=c= -d và b= 3d .
Ta chọn a=c= 1 ; b= -3 ; d= -1
⇒ y = x - 3 x - 1
Chọn D.
Viết phương trình tiếp tuyến của đồ thị hàm số y = x e - 2 x + 2 tại giao điểm của đồ thị hàm số với trục tung
A. y = x + 2
B. y = x C. y = 2x + 2
D. y = -2x + 2
C. y = 2x + 2
D. y = -2x + 2
Viết phương trình tiếp tuyến của đồ thị hàm số tại giao điểm của đồ thị với trục tung?
A. .
B. .
C. .
D. .
Chọn B
Giao điểm của đồ thị với trục tung là
Phương trình tiếp tuyến của đồ thị tại là
Viết phương trình tiếp tuyến cua đồ thị hàm số tại giao điểm của đồ thỵ hàm số với trục tung
Cho hàm số y = f(x) =(ax+b)/(cx+d)(a,b,c,d ϵ R;c ≠ 0;d ≠ 0) có đồ thị (C). Đồ thị của hàm số y = f’(x) như hình vẽ dưới đây. Biết (C) cắt trục tung tại điểm có tung độ bằng 2. Tiếp tuyến của (C) tại giao điểm của (C) và trục hoành có phương trình là
A. x – 3y +2 = 0
B. x + 3y +2 = 0
C. x – 3y - 2 = 0
D. x + 3y -2 = 0
Viết phương trình tiếp tuyến của đồ thị hàm số y = − x 3 + 3 x + 1 tại giao điểm của đồ thị với trục tung.
A. y = 1
B. y = 3x - 1
C. y = 3x + 1
D. y = -3x + 1