Trong không gian Oxyz, cho các điểm A(4;-2;4), B(-2;6;4), C(5;-1;-6). Xét các điểm M thuộc mặt phẳng (Oxy) sao cho A M B ^ = 90 ° , đoạn thẳng CD có độ dài lớn nhất bằng
A. 73
B. 5 3
C. 10
D. 8
Trong không gian Oxyz cho các điểm A(-3;0;0); B(0;-3;0); C(0;0;6) Tính khoảng cách từ điểm M(1;-3;-4) đến mặt phẳng (ABC)
A. 4
B. 2
C. 1
D. 3
Trong không gian tọa độ Oxyz, cho các điểm A 3 ; 4 ; 0 ; 3 ; 0 ; - 4 ; C 0 ; - 3 ; - 4 . Trục của đường tròn ngoại tiếp tam giác ABC đi qua điểm nào trong các điểm sau đây?
A. O 0 ; 0 ; 0
B. P 3 ; 0 ; 0
C. M 1 ; 2 ; 0
D. N 0 ; 0 ; 2
Đáp án A:
O thuộc trục của đường tròn ngoại tiếp ∆ A B C .
Chọn A.
Trong không gian Oxyz, cho hai điểm A(2;2;2), B(-4;-4;-4). Điểm nào dưới đây nằm trên đường thẳng AB?
A. M 1 (-1; 1; -1)
B. M 2 (1; -1; -1)
C. M 3 (-1; -1; 1)
D. M 4 (-1; -1; -1)
Đáp án D
Ba điểm A, B, M thẳng hàng khi và chỉ khi hai vecto AB ⇀ ; AM → cùng phương
Ta có:
Do đó, ba điểm A, B, M4 thẳng hàng hay điểm M4 nằm trên đường thẳng AB.
Trong không gian Oxyz, cho điểm A(4;-3;2). Hình chiếu vuông góc của A trên trục Ox là điểm
A. M(4;-3;0)
B. M(4;0;0)
C. M (0;0:2)
D. M (0;-3;0)
Trong không gian tọa độ Oxyz, cho A(2;0;0),B(0;2;0),C(0;0;2). Có tất cả bao nhiêu điểm M trong không gian thỏa mãn M không trùng với các điểm A, B, C và A M B ^ = B M C ^ = C M A ^ = 90 o
A. 0
B. 1
C. 2
D. 3
Trong không gian tọa độ Oxyz cho các điểm A(2; 0; 0), A’(6; 0; 0), B(0; 3; 0), B’(0 ;4; 0), C(0; 0; 4), C’(0; 0; 3).
Chứng minh rằng trực tâm H của tam giác ABC, trọng tâm G của tam giác A’B’C’ cùng nằm trên một đường thẳng đi qua O. Viết phương trình đường thẳng đó.
Tọa độ điểm \(G\) là \(G\left(\dfrac{6+0+0}{3},\dfrac{0+4+0}{3},\dfrac{0+0+3}{3}\right)\) suy ra \(G\left(2,\dfrac{4}{3},1\right)\).
\(\overrightarrow{AB}=\left(-2,3,0\right),\overrightarrow{BC}=\left(0,-3,4\right),\overrightarrow{CA}=\left(2,0,-4\right)\)
Đặt \(H\left(a,b,c\right)\).
Vì \(H\) là trực tâm tam giác \(ABC\) nên
\(\left\{{}\begin{matrix}\overrightarrow{AH}.\overrightarrow{BC}=0\\\overrightarrow{BH}.\overrightarrow{CA}=0\\\left[\overrightarrow{AB},\overrightarrow{AC}\right].\overrightarrow{AH}=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}-3b+4c=0\\2a-4c=0\\12\left(a-2\right)+8b+6c=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}a=\dfrac{72}{61}\\b=\dfrac{48}{61}\\c=\dfrac{36}{61}\end{matrix}\right.\) suy ra \(H\left(\dfrac{72}{61},\dfrac{48}{61},\dfrac{36}{61}\right)\).
\(\overrightarrow{OG}=\left(2,\dfrac{4}{3},1\right)\)
Đường thẳng qua OG: \(\left\{{}\begin{matrix}x=2t\\y=\dfrac{4}{3}t\\z=t\end{matrix}\right.\).
Bằng cách thử trực tiếp, ta thấy H nằm trên đường thẳng OG.
Trong không gian Oxyz, cho ba điểm A(-6;0;0), B(0;-4;0), C(0;0;6). Tập hợp tất cả các điểm M trong không gian cách đều ba điểm A, B, C là một đường thẳng có phương trình là
Chọn đáp án C.
Gọi M(x;y;z) ta có
hệ điều kiện
Trong không gian với hệ toạ độ Oxyz, cho hai điểm A(1;1;1),B(-2;1;-1). Tập hợp các điểm M trong không gian thoả mãn MB=2MA là một mặt cầu có bán kính bằng
A. 62 2
B. 78 2
C. 2 13 3
D. 13 3
Trong không gian tọa độ Oxyz, cho hai điểm A ( 1 ; 0 ; 0 ) , B ( 5 ; 0 ; 0 ) . Gọi (H) là tập hợp các điểm M trong không gian thỏa mãn M A → . M B → = 0 . Khẳng định nào sau đây là đúng?
A. (H) là một đường tròn có bán kính bằng 4
B. (H) là một mặt cầu có bán kính bằng 4
C. (H) là một đường tròn có bán kính bằng 2
D. (H) là một mặt cầu có bán kính bằng 2