Cho hàm số y = a x 4 + b x 2 + c , a ≢ 0 có đồ thị như hình bên. Kết luận nào sau đây là đúng?
A. a < 0 , b ≤ 0 , c > 0
B. a < 0 , b < 0 , c < 0
C. a > 0 , b > 0 , c > 0
D. a < 0 , b > 0 , c ≥ 0
Cho hàm số y = f ( x ) liên tục trên đoạn [a;b] có đồ thị như hình bên và c ∈ a ; b . Gọi S là diện tích của hình phẳng (H) giới hạn bởi đồ thị hàm số y = f ( x ) và các đường thẳng y = 0 , x = a , x = b . . Mệnh đề nào sau đây sai?
A. S = ∫ a c f x d x + ∫ c b f x d x
B. S = ∫ a c f x d x − ∫ c b f x d x
C. S = ∫ a b f x d x
D. S = ∫ a c f x d x + ∫ b c f x d x
Cho hàm số y=f(x) có đồ thị y=f’(x) như hình vẽ bên. Biết f(a)>0, hỏi đồ thị hàm số y=f(x) cắt trục hoành tại nhiều nhất bao nhiêu điểm?
A. 1 điểm
B. 2 điểm
C. 3 điểm
D. 4 điểm
Cho hàm số y = f(x) có đồ thị y = f''(x) như hình vẽ bên. Biết f (a) > 0, hỏi đồ thị hàm số y = f (x) cắt trục hoành tại nhiều nhất bao nhiêu điểm?
A. 1 điểm
B. 2 điểm
C. 3 điểm
D. 4 điểm
Đáp án B.
Từ đồ thị hàm số y = f ' ( x ) ta có bảng biến thiên:
Từ bảng biến thiên ta có f ( b ) > f ( a ) > 0
Quan sát đồ thị y = f ' ( x ) , dùng phương pháp tích phân để tính diện tích.
Ta có ∫ a b f ' ( x ) d x < ∫ a c 0 - f ' ( x ) d x ⇒ f ( c ) < f a
Nếu f c < 0 thì đồ thị hàm số y = f ( x ) cắt trục hoành tại 2 điểm phân biệt.
Nếu f c = 0 thì đồ thị hàm số y = f ( x ) tiếp xúc với trục hoành tại 1 điểm.
Nếu f c > 0 thì đồ thị hàm số y = f ( x ) không cắt trục hoành.
Vậy đồ thị hàm số y = f ( x ) cắt trục hoành tại nhiều nhất 2 điểm.
Cho hàm số y = a x 4 + b x 2 + c ( a ≠ 0 ) có đồ thị như hình bên. Kết luận nào sau đây đúng?
A. a < 0 ; b ≥ 0 , c < 0
B. a > 0 ; b ≥ 0 , c < 0
C. a > 0 ; b > 0 , c < 0
D. a > 0 ; b ≥ 0 , c > 0
Cho hàm số y = a x 4 + b x 2 + c , a ≠ 0 có đồ thị như hình bên. Kết luận nào sau đây là đúng?
A. a < 0 , b ≤ 0 , c > 0
B. a < 0 , b < 0 , c < 0
C. a > 0 , b > 0 , c > 0
D. a < 0 , b > 0 , c ≥ 0
Cho hàm số y=f(x) có đồ thị là (C), hàm số y=f'(x) có đồ thị như hình vẽ bên. Tiếp tuyến với (C) tại điểm có hoành độ x=2 cắt (C) tại hai điểm phân biệt có hoành độ lần lượt là a,b
Giá trị ( a - b ) 2 thuộc khoảng nào dưới đây
A. ( 0 ; 9 )
B. ( 12 ; 16 )
C. ( 16 ; + ∞ )
D. ( 9 ; 12 )
Cho hàm số y = a x 4 + b x 2 + c (a khác 0) có đồ thị như hình bên. Kết luận nào sau đây là đúng?
A. a < 0 ; b ≤ 0 ; c > 0
B. a < 0 ; b < 0 ; c > 0
C. a > 0 ; b > 0 ; c > 0
D. a < 0 ; b ≤ 0 ; c < 0
Cho hàm số f x = x 3 + a x + b và g x = f c x 2 + d x với a , b , c , d ∈ R có đồ thị như hình vẽ bên, trong đó đường cong đậm hơn là đồ thị của hàm số y=f(x). Diện tích hình phẳng giới hạn bởi hai đường cong y=f(x) và y=g(x) gần nhất với kết quả nào dưới đây?
A. 7,66
B. 4,24
C. 3,63
D. 5,14
S = ∫ - 1 2 x 2 - x 3 - 3 x 2 - x + 1 - x 3 - 3 x + 1 d x
Cho hàm số f(x) = a x 4 + b x 2 + c ( a , b , c ∈ ℝ , a ≠ 0 ) có đồ thị (C). Biết rằng (C) không cắt trục Ox và đồ thị hàm số y = f''(x) cho bởi hình vẽ bên. Hàm số đã cho là hàm số nào trong các hàm số dưới đây?
A. y = - 4 x 4 - x 2 - 1
B. y = 2 x 4 - x 2 + 2
C. y = x 4 + x 2 - 2
D. y = 1 4 x 4 + x 2 + 1
Chọn D
Ta có
Vì f'(x) luôn đồng biến trên ℝ nên , do đó: a > 0 và b > 0
Mặt khác vì đồ thị hàm số không cắt trục Ox nên chọn đáp án D.