Trong các số phức z thỏa mãn z = z - 1 + 2 i , số phức có mô đun nhỏ nhất là
A. z = 1 + 3 4 i
B. z = 1 2 + i
C. z = 3 +i
D. z =5
Trong các số phức z thỏa mãn | z - 1 - 2 i | + | z + 2 - 3 i | = 10 . Modun nhỏ nhất của số phức z là
A. 9 10 10
B. 3 10 10
C. 7 10 10
D. 10 5
Trong các số phức z thỏa mãn z - 1 - 2 i + z - 2 + 3 i = 10 Modun nhỏ nhất của số phức z là
Trong các số phức z thỏa mãn | z - 2 + i | = | z ¯ + 1 -4i | , tìm số phức có mô-đun nhỏ nhất.
A. z = 1
B. z = 1 - i
C. z = -1 - i
D. z = 2 - i
Chọn C.
Giả sử z = a+ bi. Khi đó:
z – 2 + i = ( a - 2) + ( b + 1) i và
Vậy z = -1 - i thỏa mãn đề bài.
Trong các số phức z thỏa mãn điều kiện |z – 1 – 2i| = 2, tìm số phức z có môđun nhỏ nhất.
Chọn C.
Gọi z = x + yi và M (x; y) là điểm biểu diễn số phức.
Ta có : |z – 1 – 2i| = 2 hay ( x - 1) 2 + (y - 2)2 = 4
Đường tròn (C): ( x - 1)2 + (y - 2)2 = 4 có tâm I(1; 2). Đường thẳng OI có phương trình y = 2x
Số phức z thỏa mãn điều kiện và có môdun nhỏ nhất khi và chỉ khi điểm biểu diễn số phức đó thuộc đường tròn (C) và gần gốc tọa độ O nhất, điểm đó chỉ là một trong hai giao điểm của đường thẳng OI với (C), khi đó tọa độ của nó thỏa mãn hệ
hoặc
Chọn nên số phức
Trong tập hợp các số phức z thỏa mãn: z + 2 - i z + 1 - i = 2 Tìm môđun lớn nhất của số phức z +i
A. 2 + 2
B. 3 + 2
C. 3 - 2
D. 2 - 2
Trong các số phức z thỏa mãn z = z - 2 + 4 i , số phức có môđun nhỏ nhất là.
A. z =5
B. z = 5 2 i
C. z = 1 +2i
D. z = 3+i
Trong các số phức z thỏa mãn điều kiện z - 2 + 4 i = z - 2 i . Số phức z có môđun nhỏ nhất là?
A. z = -2 + 2i.
B. z = 2 - 2i.
C. z = 2 + 2i.
D. z = 2 - 2i.
Chọn C.
Do đó tập hợp các điểm biểu diễn số phức z là đường thẳng có phương trình x + y – 4 = 0
Mặt khác
Trong các số phức z thỏa mãn điều kiện |z-2-4i|=|z-2i|. Số phức z có môđun nhỏ nhất là?
A. z = -2+2i
B. z = 2-2i
C. z = 2+2i
D. z = -2-2i
Trong các số phức z thỏa mãn điều kiện z - 2 - 4 i = z - 2 i .Tìm số phức z có môđun nhỏ nhất
A. z = -2 +2i
B. z = -1 +i
C. z = 3+ 2i
D. z = 2 +2i