Trong các số phức thỏa mãn điều kiện z - 4 i - 2 = 2 i - z , môđun nhỏ nhất của số phức z bằng:
A. 2
B. 3
C. 2 2
D. 2 3
Trong số các số phức z thỏa mãn điều kiện z - 4 + 3 i = 3 gọi z 0 là số phức có mô đun lớn nhất. Khi đó z 0 là:
A. 3
B. 4
C. 5
D. 8
Đáp án D
Cách giải: gọi z=x+yi
Vậy quỹ tích các điểm z thuộc đường tròn tâm I(4;-3); R=3
Đặt
(theo bunhiacopxki)
Trong số các số phức z thỏa mãn điều kiện |z-4+3i|=3, gọi z 0 là số phức có mô đun lớn nhất. Khi đó | z 0 | là:
A. 3
B. 4
C. 5
D. 8
Môđun của số phức z thỏa mãn điều kiện z + ( 2 - i ) z = 13 - 3 i là
A. 3
B. 5
C. 17
D. 17
Môđun của số phức z thỏa mãn điều kiện ( 3 z - z ) ( 1 + i ) - 5 z = 8 i - 1 là
A. 1
B. 5
C. 13
D. 13
= 2a - 4b + (2a + 4b)i - 5(a + bi) = 8i - 1
Theo giả thiết: (2a - 4b) + (2a + 4b)i - 5(a + bi) = 8i - 1
⇔ -3a - 4b + (2a - b)i = -1 + 8i
Chọn C
tính các số hữu tỉ x,y,z biết các số đó thỏa mãn điều kiện xy=1/3 ; yz=-2/5 và xz=-3/10
Cho hai số phức z1 z2 thỏa mãn đồng thời hai điều kiện sau |z-1|=\(\sqrt{34}\) , |z+1+mi| = |z+m+2i| (trong đó m là số thực) và sao cho |z1 z2| lớn nhất.Khi đó giá trị |z1 + z2| bằng:
A:\(\sqrt{2}\)
B:10
C:2
D:\(\sqrt{130}\)
Cho z = x + y i với x, y ∈ R là số phức thỏa mãn điều kiện z ¯ + 2 - 3 i ≤ | z + i - 2 | ≤ 5 . Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của biểu thức P = x 2 + y 2 + 8 x + 6 x . Tính M+m.
Tập hợp các điểm biểu diễn số phức z thỏa mãn |z + 1 + i| ≤ 2 là
A. Đường tròn tâm I(1; 1) bán kính R = 2
B. Hình tròn tâm I(1; 1) bán kính R = 2
C. Đường tròn tâm I(-1; -1) bán kính R = 2
D. Hình tròn tâm I(-1; -1) bán kính R = 2
Gọi T là tập hợp các số phức z thỏa mãn z - i ≥ 3 và z - 1 ≤ 5 . Gọi z 1 , z 2 ∈ T lần lượt là các số phức có môdun nhỏ nhất và lớn nhất. Tìm số phức z 1 + 2 z 2
A. 12+2i
B. -2+12i
C. 6-4i
D. 12+4i
Đáp án A.
Do nên tập hợp điểm M là các điểm nằm ngoài đường tròn và nằm trong đường tròn
Dựa vào hình vẽ ta chứng minh được
Khi đó