Chứng minh rằng: 7 6 3 > 7 3 6
chứng minh rằng
a)(6+62+63+64) chia hết cho 7
b)(7+72+73+...+7+10) chia hết cho 8
a, 6 + 62 + 63 + 64
= (6+62) + (63+64)
= 6(1+6) + 63(1+6)
= 6.7 + 63.7
= 7(6+63) chia hết cho 7 (đpcm)
7+72+73+74+.....+710
= (7+72) + (73+74)+.....+(79+710)
=7(1+7) + 73(1+7) +.......+ 79(1+7)
= 7.8 + 73.8 +....... + 79.8
= 8(7 + 73 +....... + 79) chia hết cho 8 (đpcm)
Bài1: chứng minh rằng
1-1/2+1/3-1/4+1/5-1/6+.......-1/1996=1/996+1/997+.....+1/9996
Bài 2:tính
A=1*3*5*7*.....*99/51*52*......*100
Bài 3: Cho A = 1/6*10+1/7*9+1/8*8+1/9*7+1/10*6 chứng minh rằng A= 1/8*(1/6+1/7+1/8+1/9+1/10)
chứng minh rằng: 7+7^2+7^3+7^4+7^5+7^6+7^7+7^8 chia hết cho 50
ta có: 7+7^2+7^3+... + 7^8
=( 7+7^2) +( 7^3 +7^4)+...+(7^7 +7^8)
= 50 + 7^2(7+7^2)+...+ 7^6(7+ 7^2)
= 50 + 7^2 . 50+...+ 7^6 . 50
= 50.( 1+7^2 + ... + 7^6) chia hết cho 50
Vậy 7 + 7^2 + 7^3 + 7^4 + 7^5 +7^6 +7^7 +7^8 chia hết cho 50
k cho mk nha
Chứng minh rằng:
a) ( 6 + 62 + 63 + 64 ) chia hết cho 7
b) ( 7 + 72 + 73 + ... + 710 ) chia hết cho 8
Chứng minh rằng:
3) (5^7- 5^6+ 5^5) chia hết cho 21
4) ( 7^6+ 7^5- 7^4) chia hết cho 77
3) (57 - 56 +55) = 55.(52-5+1)= 55.21 \(⋮\) 21
4) 76+75-74= 74.(72+7-1)=74.55=73.7.11.4=73.4.77 \(⋮\) 77
3) \(5^7-5^6+5^5=5^5.\left(5^2-5+1\right)=5^5.21⋮21\)
4) \(7^6+7^5-7^4=7^3.\left(7^3+7^2-7\right)=7^3.385=7^3.77.5⋮77\)
chứng minh rằng a(a-1)-(a+3)(a+2) chia hết cho 6
chứng minh rằng a(a+2)-(a-7)(a-5) chia hết cho 7
\(\frac{\text{(a+1)[a(a-1)-(a+3)(a+2)]}}{a+1}\)
ta có:
(a+1).a.(a-1) chia hết cho 6
(a+1).(a+3).a+2) chia hết cho 6.
(3 số tự nhiên liên kề thì chia hết cho 6);
suy ra : a(a-1)-(a+3)(a+2) chia hết cho 6
a)Ta có:\(a\left(a-1\right)-\left(a+2\right)\left(a+3\right)=a^2-a-a^2-5a-6=-6a-6\) chia hết cho 6
Câu b) tương tự.
Chứng minh rằng M=(3^5+3^6+3^7) chia hết cho 13
\(M = 3^5 + 3^6 + 3^7\)
\(M = 3^5( 3^0 + 3^1 + 3^2 )\)
\(M = 3^5 ( 1 + 3 + 3^2 )\)
\(M=3^5.13⋮13\)
Chứng minh rằng: ( 6 + 62 + 63 + 64 ) chia hết cho 7
Ta có: \(6+6^2+6^3+6^4=\left(6+6^2\right)+6^2\times\left(6+6^2\right)=\left(6+6^2\right)\times\left(1+6^2\right)=42\times\left(1+6^2\right)=6\times7\times\left(1+6^2\right)\)
Mà \(6\times7\times\left(1+6^2\right)\) chia hết cho 7
=> \(6+6^2+6^3+6^4\) chia hết cho 7
Chứng minh rằng
a.5^1 - 5^9 + 5^8 chia hết cho 7
b.6 + 6^2 + 6^3 + 6^4 + .........+ 6^9 + 6^10 chia hết cho 7
c.1+2+3+3^2+3^3+....+3^99 chia hết cho 4
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot\left(1+6\right)+6^3\cdot\left(1+6\right)+\cdot\cdot\cdot+6^9\cdot\left(1+6\right)\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+6^3+\cdot\cdot\cdot+6^9\right)⋮7\)
\(\Rightarrow6+6^2+\cdot\cdot\cdot\cdot+6^{10}⋮7\)
\(5^1-5^9+5^8=5\left(1-5^8+5^7\right)⋮7\Leftrightarrow5^8-5^7-1⋮7\)
\(5\equiv-2\left(mod7\right)\Rightarrow5^3\equiv-1\left(mod7\right)\Rightarrow5^8\equiv4\left(mod7\right);5^7\equiv-2\left(mod7\right)\)
\(5^8-5^7-1\equiv5\left(mod7\right):v\)
\(6+6^2+\cdot\cdot\cdot+6^{10}\)
\(=6\cdot7+6^3\cdot7+\cdot\cdot\cdot+6^9\cdot7\)
\(=7\cdot\left(6+\cdot\cdot\cdot+6^9\right)\)
\(⋮7\)
Chứng minh rằng M=(3 mũ 5 + 3 mũ 6 + 3 mũ 7) chia hết cho 13
\(M=3^5\left(1+3+3^2\right)=3^5.13⋮13\left(đccm\right)\)
\(M=3^5+3^6+3^7\)
\(=3^5\left(1+3+3^2\right)=3^5.13⋮13\)
Bài này mà bạn bảo của lớp 9 á