Có tất cả bao nhiêu giá trị nguyên dương của m để bất phương trình m . 9 x - 2 m + 1 . 6 x + m . 4 x ≤ 0 nghiệm đúng với mọi x ∈ 0 ; 1 ?
A. 5.
B. 2.
C. 4.
D. 6.
Có tất cả bao nhiêu giá trị nguyên dương của m để bất phương trình m .9 x − 2 m + 1 6 x + m .4 x ≤ 0 nghiệm đúng với mọi x ∈ 0 ; 1 ?
A. 5
B. 2
C. 4
D. 6
Đáp án D.
Ta có:
P T ⇔ m 9 4 x − 2 m + 1 6 4 x + m ≤ 0 ⇔ m 3 2 2 x − 2 m + 1 3 2 x + m ≤ 0
Đặt t = 3 2 x ; do x ∈ 0 ; 1 ⇒ t ∈ 1 ; 3 2 . Khi đó PT trở thành: m t 2 − 2 m + 1 t + m ≤ 0 ⇔ m t 2 − 2 t + 1 ≤ t
Rõ ràng t = 1 là nghiệm của BPT đã cho.
Với t ∈ 1 ; 3 2 ⇒ m ≤ t t − 1 2 = f t , xét f x với t ∈ 1 ; 3 2 ta có:
f ' t = t − 1 − 2 t t − 1 3 = − t − 1 t − 1 2 < 0 ∀ t ∈ 1 ; 3 2
do đó f t nghịch biến trên 1 ; 2 3 .
Do đó BPT nghiệm đúng vơi ∀ t ∈ 1 ; 3 2 ⇔ m ≤ M i n 1 ; 3 2 f t = f 3 2 = 6
Vậy có 6 giá trị nguyên dương của m thỏa mãn.
Có tất cả bao nhiêu giá trị nguyên không dương của tham số m để phương trình 2 x + m = x − 1 có nghiệm duy nhất?
A. 4
B. 3
C. 1
D. 2
⇔ x − 1 ≥ 0 2 x + m = x − 1 2 ⇔ x ≥ 1 x 2 − 4 x + 1 − m = 0 ( * )
Phương trình có nghiệm duy nhất khi hệ có nghiệm duy nhất.
TH1: ∆ ' = 0 ⇔ m = - 3 thì (*) có nghiệm kép x = 2 ≥ 1 (thỏa).
TH2: ∆ ' > 0 ⇔ m > - 3 thì phương trình có nghiệm duy nhất khi (*) có 2 nghiệm thỏa mãn:
x 1 < 1 < x 2 ⇔ x 1 - 1 x 2 - 1 < 0 ⇔ x 1 x 2 - x 1 + x 2 + < 0
⇔ 1 - m - 4 + < 0 ⇔ m > - 2
Do m không dương nên m ∈ {−1; 0}
Kết hợp với trường hợp m = −3 ở trên ta được 3 giá trị của m thỏa mãn bài toán.
Đáp án cần chọn là: B
Có tất cả bao nhiêu giá trị nguyên của m để phương trình x + 9 − x = − x 2 + 9 x + m có nghiệm?
A. 12
B. 13
C. 14
D. Vô số
Cho bất phương trình m 2 - x + 12 4 - x 2 ≥ 16 x + 3 m 2 + x + 3 m + 35 Có tất cả bao nhiêu giá trị nguyên của tham số m ∈ - 10 ; 10 để bất phương trình nghiệm đúng với mọi x ∈ - 2 ; 2 ?
A. 10
B. 18.
C. 3.
D. 4.
Cho bất phương trình m 2 - x + 12 4 - x 2 ≥ 16 x + 3 m 2 + x + 3 m + 35 .Có tất cả bao nhiêu giá trị nguyên của tham số m ∈ - 10 ; 10 để bất phương trình nghiệm đúng với mọi x ∈ - 2 ; 2 ?
A. 10.
B. 18.
C. 3.
D. 4.
Chọn C
nên hàm t = t (x) nghịch biến trên (-2;2)
Thay vào bất phương trình trên được:
Bất phương trình đã cho nghiệm đúng với mọi x ∈ - 2 ; 2 nếu và chỉ nếu bất phương trình
nghiệm đúng với mọi t ∈ - 6 ; 2
tam thức bậc hai f t = 2 t 2 - m t + 3 m - 5 có hai nghiệm thỏa mãn
Kết hợp với m ∈ - 10 ; 10 thì m ∈ - 10 ; - 9 ; - 8
Cho hàm số y = f(x) có bảng biến thiên:
Có tất cả bao nhiêu giá trị nguyên của m không vượt quá 10 để bất phương trình f log 2 10 − x − x − 6 ≤ m có nghiệm?
A. 15.
B. 16.
C. 17.
D. 14.
Gọi S là tập tất cả các giá trị nguyên không dương của m để phương trình log 1 3 x + m + log 3 3 - x = 0 có tập nghiệm. Tập S có bao nhiêu tập con?
A. 4
B. 8
C.. 2
D. 7
Gọi S là tập hợp tất cả giá trị nguyên dương và nhỏ hơn 9 của m để bất phương trình x2 + 6x <= 2m( |x + 3| - 2 ) - 6 có nghiệm thực. Tính tổng tất cả các phần tử của S
Có tất cả bao nhiêu giá trị nguyên dương của tham số m để phương trình 4 1 + x + 4 1 - x = 6 - m 2 2 + x - 2 2 - x có nghiệm thuộc đoạn 0 ; 1 ?
A. 4
B. 3
C. 1
D. 2