Cho hàm số y = f(x) liên tục, có đạo hàm trên và có đồ thị như hình vẽ. Tích phân I = ∫ 0 1 f ' 5 x - 3 bằng
A. 9/5
B. 9
C. 3
D. 2
Cho hàm số y=f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y=f(x) như hình vẽ
Tích phân ∫ 0 1 f ' 5 x - 3 d x bằng
A. 0,6
B. 1,8
C. 45
D. 15
Đổi biến
Do đó
Trên đoạn [-3;-1] đồ thị f(t) đi xuống nên trên đoạn [-1;2] đồ thị f(t) đi lên nên
Vì vậy
Chọn đáp án B.
Cho hàm số y = f(x) có đạo hàm liên tục trên R và có đồ thị như hình bên. Tính tích phân I = ∫ 1 2 f ' 2 x - 1 d x
A. I = -2
B. I = -1
C. I = 1
D. I = 2
Cho hàm số y = f(x) có đạo hàm liên tục trên R, đồ thị của hàm số y = f′(x) như hình vẽ bên. Số nghiệm thực phân biệt của phương trình f(x) = f(0) trên đoạn [−3;6] là
A. 4
B. 3.
C. 5.
D. 2.
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ và có đồ thị hàm số y = f ' x như hình vẽ.
Khi đó đồ thị hàm số y = f x 2 có
A.2 điểm cực đại, 2 điểm cực tiểu.
B. 3 điểm cực đại, 2 điểm cực tiểu.
C.1 điểm cực đại, 3 điểm cực tiểu.
D.2 điểm cực đại, 3 điểm cực tiểu.
Câu 23: Cho hàm số y = f(x) có đạo hàm liên tục trên R và có đồ thị như hình vẽ bên. Hàm số y = f(3 - 2x) tăng trên khoảng nào:
Hình 3: Đồ thị y=f(x)
Cho hàm số f(x) có đạo hàm f'(x) liên tục trên R và có đồ thị của hàm số f'(x) như hình vẽ. Biết ∫ 0 3 x + 1 f ' x d x = a và ∫ 0 1 f ' x d x = b , ∫ 1 3 f ' x d x = c , f 1 = d . Tích phân ∫ 0 3 f x d x bằng
A. -a+b+4c-5d.
B. -a+b-3c+2d.
C. -a+b-4c+3d.
D. -a-b-4c+5d.
Cho hàm số y = f(x) có đạo hàm liên tục trên R và có đồ thị hàm số y = f'(x) như hình vẽ. Hàm số y = f ( 2 x 2 + x ) có bao nhiêu cực trị?
A. 4.
B. 5.
C. 3.
D. 1.
Cho hàm số f(x) có đạo hàm f'(x) liên tục trên R và có đồ thị của hàm số f'(x) như hình vẽ, Biết ∫ 0 3 x + 1 f ' x d x = a và ∫ 0 1 f ' x d x = b , ∫ 1 3 | f ' x | d x = c , f 1 = d . Tích phân ∫ 0 3 f x d x bằng
A. .
B. .
C. .
D.
Cho hàm số y = f(x) có đạo hàm liên tục trên R và hàm số y= f’(x) có đồ thị như hình vẽ bên.
Mệnh đề nào sau đây đúng?
A. Hàm số y= f( x) đạt cực đại tại điểm x= -1
B. Hàm số y= f( x) đạt cực tiểu tại điểm x= 1
C. Hàm số y= f(x) đạt cực tiểu tại điểm x= -2
D. Hàm số y= f(x) đạt cực đại tại điểm x= -2.
Chọn C
+ ta có: f’( x) = 0 khi x= -1 hoặc x= -2.
+ Giá trị của hàm số y= f’(x) không đổi dấu khi đi qua x= - 1 nên x= -1 không là điểm cực trị của hàm số.
+ Giá trị của hàm số y= f’(x) đổi dấu từ âm sang dương khi qua x= -2
=> Hàm số y= f(x) đạt cực tiểu tại điểm x= -2.