Cho ∫ 0 4 f ( x ) d x = 2018 . Tính tích phân I = ∫ 0 2 f 2 x + f 4 - 2 x
A. I = 1009.
B. I = 0.
C. I = 2018.
D. I = 4036.
Cho ∫ 0 4 f ( x ) d x = 2018 . Tính tích phân của I = ∫ 0 2 f ( 2 x ) + f ( 4 - 2 x ) d x .
Cho hàm số f(x) liên tục trên R vàvà ∀ x ∈ [ 0 ; 2018 ] , ta có f(x)>0 và f(x).f(2018-x)=1 . Giá trị của tích phân I = ∫ 0 2018 1 1 + f ( x ) d x
A. 2018.
B. 0.
C. 1009.
D. 4016.
Cho hàm số f(x) liên tục trên ℝ và ∀ x ∈ 0 ; 2018 , ta có f ( x ) > 0 và f ( x ) . f ( 2018 − x ) = 1 . Giá trị của tích phân I = ∫ 0 2018 1 1 + f ( x ) d x là
A. 2018
B. 0
C. 1009
D. 4016
Đáp án C
Do đó 2 I = I + I = ∫ 0 2018 1 1 + f ( x ) d x + ∫ 0 2018 f ( x ) 1 + f ( x ) d x = ∫ 0 2018 1 d x = 2018
Vậy I = 1019
Cho hàm số y=f(x) có đạo hàm liên tục trên đoạn [ 0 ; 2 ] và thỏa mãn f ( 0 ) = 2 , ∫ 0 2 ( 2 x - 4 ) . f ' ( x ) d x = 4 . Tính tích phân I = ∫ 0 2 f ( x ) d x .
A. I = 2
B. I = - 2
C. I = 6
D. I = - 6
Cho hàm số f(x) có đạo hàm trên đoạn [1;3], f(1) = 1 và f(3) = 2018. Giá trị của tích phân I = ∫ 1 3 f ' ( x ) d x
A. I = 2017.
B. I = -2017.
C. I = 2018.
D. I = 2016.
Cho hàm số y=f(x) liên tục trên đoạn [0;π/3].Biết f’(x).cosx+f(x).sinx=1, x ϵ [0;π/3] và f(0)=1. Tính tích phân I = ∫ 0 π 3 f x d x
A. 1/2 + π/3
B. 3 + 1 2
C. 3 - 1 2
D. 1/2
Cho f(x) là hàm số chẵn, liên tục trên ℝ thỏa mãn ∫ 0 1 f x d x = 2018 và g(x) là hàm số liên tục trên ℝ thỏa mãn g x + g − x = 1 , ∀ x ∈ ℝ . Tính tích phân I = ∫ − 1 1 f x . g x d x
A. I = 2018
B. I = 1009 2
C. I = 4036
D. I = 1008
Cho f(x) là hàm số chẵn, liên tục trên R thỏa mãn ∫ 0 1 f ( x ) d x = 2018 và g(x) là hàm số liên tục trên R thỏa mãn g ( x ) + g ( - x ) = 1 Tính tích phân I = ∫ - 1 1 f ( x ) . g ( x ) d x
A. I = 2018
B. I = 504,5
C. I =4036
D. I = 1008
Cho hàm số y=f(x) xác định và liên tục trên 0 ; + ∞ sao cho x2+ x.f(ex) + f(ex)=1 với mọi x ∈ 0 ; + ∞ . Tính tích phân I = ∫ e e ln x . f ( x ) x d x
A. -1/8
B. -2/3
C. 1/12
D. 3/8
Cho số thực a>0. Giả sử hàm số f(x) liên tục và luôn dương trên đoạn [0;a] thỏa mãn f(x).f(a – x) = 1, ∀ x ∈ [0;a]. Tính tích phân I = ∫ 0 a 1 1 + f ( x ) d x
Đáp án A
Phương pháp : Sử dụng phương pháp đổi biến, đặt x = a – t.
Cách giải : Đặt x = a – t => dx = –dt. Đổi cận
=>