Tính tổng hai số nguyên a va b khác nhau biết chúng là các số nguyên dương nhỏ nhất thỏa mãn a7=b8
tính tổng hai số nguyên a và b khác nhau là các số nguyên dương nhỏ nhất thỏa man a^7=b^8
Vì a và b là các số nguyên dương khác nhau nên nếu một số bằng 1 thì số kia cũng bằng một nên a và b >1
Do a>1 nên tồn tại ít nhất một ước số nguyên tố . Giả sử p là ước nguyên tố của a
Giả sử a=c.pn ; n\(\ge\)1 và ƯCLN(d;p)=1
a chia hết cho p => a7 chia hết cho p =>b8 chia hết cho p
do p nguyên tố nên => b chia hết cho p . Giả sử b=d.pm ; m\(\ge\)1 và ƯCLN(d;p)=1
Ta có a7 =c7 p7n và b8 =d8 .p8m
=>c7 .p7n =d8 .p8m
do ƯCLN(c;p)=1=>ƯCLN(c7;p)=1=>ƯCLN(c7 ; p8m )=1
tương tự ƯCLN(d8 ;p7n)=1
=>c7=d8 và p7n =p8n
a,b nhỏ nhất =>c=d=1
p7n =p8m =>7n=8m . => m chia hết cho 7 và n chia hết cho 8 => n=8 và m=7
=>a=p8 và b=p7
p nguyên tố nhỏ nhất p=2
=>a=256 ; b=128 =>256+128=384
a) cho ba số nguyên a,b,c thỏa mãn :a+b=c+d và ab +1=cd . Chứng tỏ c=d
b)cho dãy số nguyên dương : a1,a2,a3,...a7.Gọi b1,b2,...b7 là cách sắp xếp theo thứ tự khác của các số trên . Tính tổng
c)(a1+b1),(a2+b2),....(a7+b7) và cho biết tích P=(a1+b1).(a2+b2).....(a7+b7) là chẵn hay lẻ?
CÁC BẠN GIẢI NHANH GIÙM MÌNH NHA!
Xét tổng Nếu cả 7 số đều lẻ thì tổng của chúng là số lẻ và do đó khác 0 Suy ra có ít nhất một trong 7 số là số chẵn |
là số chẵn
1. Tổng tất cả các số nguyên là tử của p/s tối giản lớn hơn 14 nhưng nhỏ hơn 21 và có mẫu 17?
2. số TN có 2 chữ số sao cho tỉ số của số đó và tổng các chữ số của nó là lớn nhất?
3. Tính tổng 2 số nguyên a và b khác nhau biết chúng là các số nguyên dương nhỏ nhất thỏa mán a^7 = b^8
4. Trong 1 phép chia có số bị chia = 112, thương =5, tổng nhỏ nhất của số chia và số có thể là?
5. Biết rằng khi cộng số bị chia với 10 và nhân số chia với 10 thì thương của phép không đổi, số bị chia đó là?
Cho bốn số nguyên dương khác nhau thỏa mãn tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì luôn chia hết cho 3. Tính giá trị nhỏ nhất của tổng bốn số này
Gọi 4 số cần tìm là a, b, c, d
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Gọi 4 số cần tìm là a, b, c, d (a, b, c, d thuộc n*)
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Nếu cảm thấy đúng thì k cho mình cái!
Cho bốn số nguyên dương khác nhau thỏa mãn tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3. Tính giá trị nhỏ nhất của tổng bốn số này ?
Cho bốn số nguyên dương khác nhau thỏa mãn tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3. Tính giá trị nhỏ nhất của tổng bốn số này
Cho a,b là 2 số nguyên dương thỏa mãn tổng,hiệu,tích,thương của chúng là 4 số nguyên dương khác nhau.Tìm GTNN của a + b
cho bốn số nguyên dương khác nhau thỏa mãn tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 . tính giá trị nhỏ nhất của tổng bốn số này
Gọi 4 số cần tìm là a, b, c, d
với 0<a<b<c<d
Vì tổng của hai số bất kì chia hết cho 2 và tổng của ba số bất kì chia hết cho 3 nên các số a, b, c, d khi chia cho 2 hoặc 3 đều phải có cùng số dư
Để a+b+c+d có giá trị nhỏ nhất thì a, b, c, d phải nhỏ nhất và chia 2 hoặc 3 dư 1
Suy ra: a=1
b=7
c=13
d=19
Vậy giá trị nhỏ nhất của tổng 4 số này là: 1+7+13+19=40
Cho a;b;c;d là các số nguyên dương và thỏa mãn: (a/b)<(c/d). tìm một số hữu tỉ x sao cho (a/b)<x<(c/d), từ đó chúng minh rằng ta có thể tìm được các số hữu tỉ khác nhau nằm giữa hai số 1 và 2 (khi biểu diễn trên trục số) mà tổng của chúng lớn hớn 2023 (giải theo trình độ lớp 7)