Cho hàm số y = f x liên tục trên ℝ và có đạo hàm f ' x = 2 - x 2 x - 1 3 3 - x . Hàm số đồng biến trên khoảng nào dưới đây?
A. 3 ; + ∞
B. - ∞ ; 1
C. - ∞ ; 2
D. 1 ; 2
Cho hàm số y = f(x) , có đạo hàm là f '(x) liên tục trên ℝ và hàm số f '(x) có đồ thị như hình dưới đây.
Hỏi hàm số y = f(x) có bao nhiêu cực trị?
A. 1.
B. 0.
C. 3.
D. 2.
Cho hàm số y = f(x) , có đạo hàm là f'(x) liên tục trên ℝ và hàm số f'(x) có đồ thị như hình dưới đây.
Hỏi hàm số y = f(x) có bao nhiêu cực trị?
A. 1.
B. 0.
C. 3.
D. 2.
Chọn C.
Ta có f'(x)= 0
(Trong đó -2 < a < 0 < b < c < 2)
Ta có bảng xét dấuDựa vào bảng xét dấu ta thấy hàm số y = f(x) có 3 cực trị.
Cho hàm số y=f’(x) liên tục và có đạo hàm trên ℝ đồ thj hàm số y=f’(x) như hình vẽ bên dưới. Hàm số đã cho nghịch biến trên khoảng nào dưới đây?
A. - ∞ ; - 2
B. - 1 ; 1
C. 2 ; + ∞
D. - ∞ ; - 1
Hàm số nghịch biến nếu f’(x)<0 Quan sát đồ thị y=f’(x), chọn đáp án A. Chọn A
Cho hàm số y=f( x ) có đạo hàm liên tục trên ℝ và có đồ thị của hàm y= f ' ( x ) như hình vẽ
Xét hàm số Mệnh đề nào dưới đây sai?
A. Hàm số f (x) đạt cực đại tại x=2
B. Hàm số f (x) nghịch biến trên - ∞ ; 2
C. Hàm số f(x) đồng biến trên ( 2; + ∞ )
D. Hàm số f(x) đồng biến trên ( -1; 0)
Đáp án D
Dễ thấy
Do f (x) đổi dấu từ âm sang dương khi qua điểm x = 2 nên f (x) đạt cực trị tại x =2
Hàm số f (x) nghịch biến trên do
Đặt
đồng biến trên
Cho hàm số y = f(x) có đạo hàm liên tục trên ℝ thỏa mãn f ' x - x f x = 0 , f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e
B. 1 e
C. e
D. e
Cho hàm số y= f(x) liên tục trên ℝ và có bảng xét dấu của đạo hàm như hình vẽ.
Hàm số y= f(x) có bao nhiêu điểm cực trị?
A. 4.
B. 1.
C. 2.
D. 3.
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ thỏa mãn f'(x) -xf(x) = 0, f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e .
B. 1 e .
C. e .
D. e.
Cho hàm số y = f x liên tục trên ℝ và có đạo hàm f ' x = 2 - x 2 x - 1 3 3 - x . Hàm số y = f x đồng biến trên khoảng nào dưới đây?
A. 3 ; + ∞
B. - ∞ ; 1
C. - ∞ ; 2
D. ( 1;2)
Cho hàm số y = f ( x ) có đạo hàm liên tục trên ℝ và có đồ thị hàm số y = f ' ( x ) như hình vẽ. Đặt g ( x ) = f ( x 3 ) . Tìm số điểm cực trị của hàm số y = g ( x )
A. 3
B. 5
C. 4
D. 2
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ và đồ thị hàm số y=f’(x) như hình bên. Số điểm cực trị của hàm số y = f x - 1 2 x 2 - 2 x là:
A. 1
B. 2
C. 3
D. 4