Cho hàm số y = f x xác định và liên tục trên R, có đồ thị hàm số y = f ' x như hình vẽ bên dưới. Hàm số g x = f x - 1 2 x 2 + x - 8 có bao nhiêu điểm cực tiểu?
A. 3.
B. 2.
C. 1.
D. 4.
Cho hàm số y= f( x) liên tục và xác định trên R. Biết f( x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ. Xét trên , khẳng định nào sau đây đúng?
A. Hàm số y= f( x) đồng biến trên khoảng .
B. Hàm số y= f( x) nghịch biến trên khoảng .
C. Hàm số y= f(x) nghịch biến trên khoảng - π ; - π 2 và π 2 ; π .
D. Hàm số y= f( x) đồng biến trên khoảng .
Chọn D
Trong khoảng đồ thị hàm số y= f’(x) nằm phía trên trục hoành nên hàm số y= f( x) đồng biến trên khoảng ( 0; π)
Cho hàm số y=f(x) xác định và liên tục trên R. Đồ thị của hàm số f(x) như hình bên. Số điểm cực trị của đồ thị hàm số y=f(f(x)) bằng?
A. 8
B. 9
C. 10.
D. 11.
Cho hàm số y=f(x) xác định và liên tục trên R, có đạo hàm f’(x). Biết rằng đồ thị hàm số f’(x) như hình vẽ. Xác định điểm cực đại của hàm số g(x)=f(x) +x .
A. Không có giá trị
B. x = 0
C. x = 1
D. x = 2
Cho hàm số y=f(x) xác định và liên tục trên R, có đạo hàm f'(x). Biết rằng đồ thị hàm số f'(x) như hình vẽ. Xác định điểm cực đại của hàm số g(x)=f(x)+x.
A. Không có giá trị
Cho hàm số y= f(x) liên tục và xác định trên R. Biết f( x) có đạo hàm f’( x) và hàm số y= f’( x) có đồ thị như hình vẽ, khẳng định nào sau đây đúng?
A. Hàm số y= f( x) đồng biến trên R
B. Hàm số y= f( x) nghịch biến trên R.
C. Hàm số y= f( x) chỉ nghịch biến trên khoảng .
D. Hàm số y= f( x) nghịch biến trên khoảng (0; + ∞) .
Chọn D
Trong khoảng (0 ; + ∞) đồ thị hàm số y= f’( x) nằm phía dưới trục hoành- tức là f’( x)< 0 trên khoảng đó
=> Hàm số y= f(x) nghịch biến trên khoảng
Cho hàm số y = f(x) liên tục và xác định trên R. Biết f(x) có đạo hàm f’(x) và hàm số y= f’(x) có đồ thị như hình vẽ, khẳng định nào sau đây đúng?
A. Hàm số f( x) đồng biến trên R.
B. Hàm số f( x) nghịch biến trên R.
C. Hàm số f(x) chỉ nghịch biến trên khoảng (0; 1) .
D. Hàm số f(x) đồng biến trên khoảng (0; + ∞) .
Chọn C
Trong khoảng ( 0; 1) đồ thị hàm số y= f’( x) nằm phía dưới trục hoành nên trên khoảng này thì f’( x)< 0.
=> hàm số f(x) nghịch biến trên khoảng (0; 1) .
Cho hàm số y=f(x) xác định, liên tục trên R và có bảng biến thiên như sau:
Đồ thị hàm số y = | f ( x ) | có bao nhiêu điểm cực trị?
A. 2
B. 3
C. 4
D. 5
Chọn B.
Cách 1: Số điểm cực trị của đồ thị hàm số y=|f(x)| bằng số điểm cực trị của đồ thị hàm số y=f(x) cộng với số giao điểm của đồ thị hàm số y=f(x)với trục hoành (không tính điểm cực trị)
Vì đồ thị hàm số y=f(x) có 2 điểm cực trị và cắt trục Ox tại 1 điểm nên đồ thị hàm số y=|f(x)| có 2 + 1 = 3 điểm cực trị
Đáp án: 3 cực trị
Cho hàm số y=f(x) xác định và liên tục trên R và có đồ thị là đường cong trong hình vẽ bên.
Hỏi điểm cực tiểu của đồ thị hàm số y= f(x) là điểm nào ?
A. x=-2
B. y=-2
C.
D.
Chọn C.
Vì đề bài hỏi điểm cực tiểu của đồ thị hàm số, dựa hình vẽ ta thấy điểm là điểm cực tiểu của đồ thị hàm số.
Cho hàm số y = f(x) liên tục trên R có đồ thị y = f'(x) như hình vẽ bên. Biết f 1 = 0 . Xác định số điểm cực trị của đồ thị hàm số y = |f(x)|.
A. 5
B. 6
C. 4
D. 3
Đáp án D.
Đồ thị hàm số y = f(x) có dạng:
Đồ thị hàm số y = |f(x)| có dạng:
→ Hàm số y = |f(x)| có 3 điểm cực trị.
Cho hàm số y= f( x) có đạo hàm f’(x) xác định, liên tục trên R và f’( x) có đồ thị như hình vẽ bên. Khẳng định nào sau đây là đúng?
A. Hàm số đồng biến trên ( 1; + ∞)
B. Hàm số đồng biến trên (-∞;-1) và (3; + ∞)
C. Hàm số nghịch biến trên (- ∞; -1)
D. Hàm số đồng biến trên
Chọn B
Trên khoảng và
đồ thị hàm số f’( x) nằm phía trên trục hoành.
=> Trên khoảng ( -∞; -1) và ( 3; + ∞) thì f’( x) > 0.
=> Hàm số đồng biến trên khoảng ( -∞; -1) và ( 3; + ∞)