Trong với n ∈ ℕ , n ≥ 2 và thỏa mãn 1 C 2 2 + 1 C 3 2 + 1 C 4 2 + . . . + 1 C n 2 = 9 5 . Tính giá trị của biểu thức P = C n 5 + C n + 2 3 ( n - 4 ) ! .
A. 61 90
B. 59 90
C. 29 45
D. 53 90
Trong Với n ∈ ℕ , n ≥ 2 và thỏa mãn 1 C 2 2 + 1 C 3 2 + 1 C 4 2 + ... + 1 C n 2 = 9 5 . Tính giá trị của biểu thức P = C n 5 + C n + 2 3 n − 4 ! .
A. 61 90
B. 59 90
C. 29 45
D. 53 92
Đáp án B
1 C 2 2 + 1 C 3 2 + 1 C 4 2 + . . . + 1 C n 2 = 9 5 ⇔ 1 + 1 3 + 1 6 + ... + 2 n ( n − 1 ) = 9 5 ⇔ 2 2.3 + 2 3.4 + ... + 2 n ( n − 1 ) = 4 5 ⇔ 1 2 − 1 3 + 1 3 − 1 4 + ... + 1 n − 1 − 1 n = 2 5 ⇔ 1 2 − 1 n = 2 5 ⇔ 1 n = 1 10 ⇔ n = 10
Cho khai triển nhị thức Niuton x 2 + 2 n x n với n n ∈ ℕ , x > 0. Biết rằng số
hạng thứ 2 của khai triển bằng 98 và n thỏa mãn A n 2 + 6 C n 3 = 36 n Trong các giá trị x sau, giá trị nào thỏa mãn?
A. 3
B. 4
C. 1
D. 2
Cho khai triển nhị thức Niuton x 2 + 2 n x n với n Î ℕ , x > 0. Biết rằng số hạng thứ 2 của khai triển bằng 98 và n thỏa mãn A n 2 + 6 C n 3 = 36 n
Trong các giá trị x sau, giá trị nào thỏa mãn?
A. x = 3.
B. x = 4 .
C. x =1.
D. x = 2 .
Cho dãy số u n thỏa mãn log u 1 2 + u 2 2 + 10 - log 2 u 1 + 6 u 2 = 0 v à u n + 2 + u n = 2 u n + 1 + 1 với mọi n ∈ ℕ * . Giá trị nhỏ nhất của n để u n > 5050 bằng
A. 101
B. 102
C. 100
D. 99
Cho hàm số f n = a n + 1 + b n + 2 + c n + 3 n ∈ ℕ * với a, b, c là hằng số thỏa mãn a + b + c = 0. Khẳng định nào sau đây đúng?
A. l i m x → + ∞ f ( n ) = - 1
B. l i m x → + ∞ f ( n ) = 1
C. l i m x → + ∞ f ( n ) = 0
D. l i m x → + ∞ f ( n ) = 2
Cho dãy số u n thỏa mãn u 1 = 2 u n + 1 = u n + 2 − 1 1 − 2 − 1 u n , ∀ n ∈ ℕ * Tính u 2018 .
A. u 2018 = 7 + 5 2
B. u 2018 = 2
C. u 2018 = 7 − 5 2
D. u 2018 = 7 + 2
Đáp án A
Đặt u 1 = tan α ⇒ u 2 = tan α + tan π 8 1 − tan α . tan π 8 = tan α + π 8 .
Tương tự dung quy nạp suy ra:
u n = tan α + π n − 1 8 ⇒ u 2018 = tan α + 2017 π 8 = tan α + π 8 = u 2 = 7 + 5 2 .
Cho dãy số un thỏa mãn u 1 = 2 u n + 1 = u n + 2 − 1 1 − 2 − 1 u n , ∀ n ∈ ℕ ∗ . Tính u 2018 .
A. u 2018 = 7 + 5 2
B. u 2018 = 2
C. u 2018 = 7 − 5 2
D. u 2018 = 7 + 2
Đáp án A
Ta có tan π 8 = 2 − 1 suy ra u n + 1 = u n + tan π 8 1 − tan π 8 . u n
Đặt tan φ = 2 suy ra u 1 = tan φ → u 2 = u 1 + tan π 8 1 − tan π 8 . u 1 = tan φ + tan π 8 1 − tan φ . tan π 8 = tan φ + π 8
Do đó u 3 tan φ + 2. π 8 → u n tan φ + n . π 8
Vậy u 2018 = tan φ + 2017. π 8 = tan φ + π 8 = u 2 = 2 + 2 − 1 1 − 2 2 − 1 = 7 + 5 2
Cho dãy số u n thỏa mãn u 1 = 1 u n = 3 u n - 1 + 1 ∀ n ∈ ℕ , n ≥ 2 . Tìm giá trị nhỏ nhất của n để log 9 u n > 100
A. 102
B. 101
C. 202
D. 201
Chọn đáp án D
Vậy số tự nhiên n nhỏ nhất thỏa mãn điều kiện trên là n 0 = 201
Cho hàm số \(f\) xác định trên \(ℕ^∗\) và thỏa mãn:
\(f\left(n+1\right)=n\left(-1\right)^{n+1}-2f\left(n\right)\) và \(f\left(1\right)=f\left(2024\right)\)
Tính \(S=f\left(1\right)+f\left(2\right)+f\left(3\right)...+f\left(2023\right)\)