Gọi z 0 là nghiệm phức có phần ảo âm của phương trình 2 z 2 - 6 z + 5 = 0 Điểm nào sau đây biểu diễn số phức i z 0
Gọi z 1 , z 2 là 2 nghiệm của phương trình z 4 z 2 + z ¯ = − 4 ( z 2 là số phức có phần ảo âm). Khi đó z 1 + z 2 bằng:
A. 1
B. 4
C. 8
D. 2
Gọi z 1 , z 2 là 2 nghiệm của phương trình z 4 z 2 + z ¯ = - 4 ( z 2 là số phức có phần ảo âm). Khi đó z 1 + z 2 bằng
Biết z là số phức có phần ảo âm và là nghiệm của phương trình z 2 - 6 z + 10 = 0 Tính tổng phần thực và phần ảo của số phức w = z z ¯
Biết z là số phức có phần ảo âm và là nghiệm của phương trình z 2 − 6 z + 10 = 0. Tính tổng phần thực và phần ảo của số phức w = z z ¯ .
A. 4 5
B. 2 5
C. 7 5
D. 1 5
Cho số phức z có phần ảo là số âm và là nghiệm của phương trình z − 2 2 + z 2 = 0 . Môđun của số phức w = i z + 2 z là
A. 2
B. 2 2
C. 2
D. 4
Cho số phức z có phần ảo là số âm và là nghiệm của phương trình z − 2 2 + z 2 = 0. Môđun của số phức w = i z + 2 z là
A. 2
B. 2 2
C. 2
D. 4
Gọi z1 là nghiệm phức có phần ảo âm của phương trình z 2 + 2 z + 2 = 0 . Tìm số phức liên hợp của w = ( 1 + 2 i ) z i
A. w = - 3 - i
B. w = 1 - 3 i
C. w = 1 + 3 i
D. w = - 3 + i
Kí hiệu z 1 là nghiệm phức có phần ảo âm của phương trình z 2 − z + 1 = 0 . Trên mặt phẳng tọa độ tìm điểm biểu diễn của số phức w = iz 1 − 3 2 .
A. 1 2 ; 3 2
B. 1 2 ; 0
C. 1 2 ; − 3 2
D. 0 ; 1 2
Gọi z1; z2 là hai nghiệm phức của phương trình z2 – z + 1 = 0 . Tìm phần thực, phần ảo của số phức lần lượt là?
A. 0; 1
B. 1; 0
C. -1; 0
D. 0; -1
Chọn C.
Ta có
Áp dụng công thức Moa-vrơ:
Phần thực của w là -1, phần ảo là 0.
Trong tập các số phức, gọi z 1 , z 2 là hai nghiệm của phương trình z 2 - z + 2017 4 = 0 với z 2 có thành phần ảo dương. Cho số phức z thỏa mãn z - z 1 = 1 . Giá trị nhỏ nhất của P = z - z 2 là
A. 2016 - 1
B. 2017 - 1 2
C. 2016 - 1 2
D. 2017 - 1
Đáp án A
Phương pháp.
Giả sử Giả phương trình ban đầu để tìm được nghiệm z 1 , z 2 Sử dụng giả thiết để đánh giá cho cho b. Đưa về một hàm cho b và sử dụng ước lượng cho b ở phần trước để tìm giá trị nhỏ nhất của P.
Lời giải chi tiết.
Tính toán ta tìm được hai nghiệm
Giả sử . Từ ta suy ra
Áp dụng (1) ta nhận được
Do đó giá trị nhỏ nhất của là 2016 - 1
Đạt được khi và chỉ khi