A=1/2^2 +1/3^2+1/4^2+...+1/100^2 và B=1/4^2+1/6^2+1/8^2+...+1/200^2. Tính A/B
A=1/2^2 +1/3^2+1/4^2+...+1/100^2 và B=1/4^2+1/6^2+1/8^2+...+1/200^2. Tính A/B
Cho A = 1/ 2^2 + 1/3^2 + 1/4^2 + .......+ 1/100^2 và B = 1/4^2 + 1/6^2 + 1/8^2 +........+ 1/200^2 . tính A/B = ........
\(B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+....+\frac{1}{200^2}=\frac{1}{\left(2.2\right)^2}+\frac{1}{\left(2.3\right)^2}+\frac{1}{\left(2.4\right)^2}+...+\frac{1}{\left(2.100\right)^2}\)
\(B=\frac{1}{2^2.2^2}+\frac{1}{2^2.3^2}+\frac{1}{2^2.4^2}+...+\frac{1}{2^2.100^2}=\frac{1}{2^2}.\frac{1}{2^2}+\frac{1}{2^2}.\frac{1}{3^2}+\frac{1}{2^2}.\frac{1}{4^2}+...+\frac{1}{2^2}.\frac{1}{100^2}\)
\(B=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+....+\frac{1}{100^2}\right)=\frac{1}{4}.A\)
\(\Rightarrow\frac{A}{B}=\frac{A}{\frac{1}{4}A}=\frac{A}{\frac{A}{4}}=A.\frac{4}{A}=4\)
A=1/2^2 +1/3^2+1/4^2+...+1/100^2 và B=1/4^2+1/6^2+1/8^2+...+1/200^2. Tính A/B
giup dum minh like cho gap lam roi
A = 1/2^2 + 1/3^2 + 1/4^2 + ... + 1/100^2 và B = 1/4^2 + 1/6^2 + 1/8^2 + ...1/200^2. Khi đó A/B = ...
CHO A=1/2^2+1/3^2+1/4^2+...+1/100^2 va B=1/4^2+1/6^2+1/8^2+.....+1/200^2khi do A/B=...
nhanh len cac ban oi
cho A=1/2^2+1/3^2+...+1/100^2 và B=1/4^2+1/6^2+...+1/200^2. Khi đó A/B=
1)Tính nhanh: A=1+3+3^2+3^3+3^4+...+3^100
B= 1+4^2+4^4+4^6+...+4^100
2) Cho biết 1^2+2^3+3^2+4^2+...+10^2= 385
Tính a) S1= 2^2+4^2+...+20^2
. b) S2= 100^2+200^2+...1000^2
Bài 1:
A = 1 + 3 + 32 + ... + 3100
=> 3A = 3 + 32 + ... + 3101
=> 2A = 3101 - 1
=> A = \(\frac{3^{101}-1}{2}\)
B = 1 + 42 + 44 + ... + 4100
=> 8B = 42 + 44 + ... + 4102
=> 7B = 4102 - 1
=> B = \(\frac{4^{102}-1}{7}\)
Bài 2:
a) S1 = 22 + 42 + ... + 202
=> S1 = 22(1+22+...+102)
=> S1 = 22.385
=> S1 = 1540
b) S2 = 1002 + 2002 + ... + 10002
=> S2 = 1002(1+22+...+102)
=> S2 = 1002.385
=> S2 = 3850000
So sánh A ;B : \(A=\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2};B=\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}\)
Ta có:
\(2^2<4^2\Rightarrow\frac{1}{2^2}>\frac{1}{4^2}\)
\(3^2<6^2\Rightarrow\frac{1}{3^2}>\frac{1}{6^2}\)
\(4^2<8^2\Rightarrow\frac{1}{4^2}<\frac{1}{8^2}\)
\(...\)
\(100^2<200^2\Rightarrow\frac{1}{100^2}>\frac{1}{200^2}\)
\(\Rightarrow\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}>\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}\)
\(\Rightarrow A>B\)
A>B vì mẫu số càng nhỏ thì phân số càng lớn
Cho A= \(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\) và B =\(\frac{1}{4^2}+\frac{1}{6^2}+\frac{1}{8^2}+...+\frac{1}{200^2}\). Khi đó \(\frac{A}{B}\)= ?
\(B=\frac{1}{2^2}.\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)\)
\(\rightarrow\frac{A}{B}=\frac{\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}^2}{\frac{1}{4}\left(\frac{1}{2^2}+\frac{1}{3^2}+\frac{1}{4^2}+...+\frac{1}{100^2}\right)}=\frac{1}{\frac{1}{4}}=4\)