số tự nhiên n có dạng n=37k là số nguyên tố khi n=....
Số tự nhiên n có dạng n=37k là số nguyên tố khi k=?
37k là số nguyên tố
mà 37k chia hết cho 37 (37 là số nguyên tố)
=>37k là hợp số (37k khác 37)
37k = 37 => k = 1
Số tự nhiên n có dạng n=37k là số nguyên tố khi k =
37k là số nguyên tố
Mà 37k chia hết cho 37 (nguyên tố)
< = > 37k là hợp số (37k khác 37)
=> 37k = 37 => k = 1
số tự nhiên n có dạng n= 37k là số nguyên tố khi k= .......
1:UCLN(90;225;360)
2:ước chung lớn nhất của hai số lẻ liên tiếp bằng?
3:số tự nhiên n có dạng n=37k là số nguyên tố khi k=.........
4:tập hợp các số tự nhiên gồm các số nguyên dương và số.........
Câu1 :Số nguyên x thỏa mãn 55-(6-x)=15-(-6)
Câu2: Số nguyên âm nhỏ nhất có ba chữ số là ...
Câu3: Số dư khi chia 5^13+5^11-5^10-38 cho 43 là ...
Câu4: Tập hợp các số nguyên x thỏa mãn: |-17-x=7 là...
Câu5: Nếu x là một số lẻ khác 0 thì x^0 bằng ...
Câu6: Số tự nhiên n có dạng n=37k là số nguyên tố khi k bằng ...
Câu 1: Số tự nhiên n có dạng n=37k là số nguyên tố khi k=...
Câu 2:Gía trị nhỏ nhất của biểu thức A=|x+1|+5012015
Câu 3: Tìm số tự nhiên a biết rằng 452/a dư 32 và 321/a dư21
Câu 4: Cho c+5d chia hết cho 7 (với c;d thuộc N)
Số dư của 10c+d+1 khi chia cho 7 là...
Câu 5: Tập hợp các số tự nhiên n thỏa mãn (n^2 +n+4)chia hết cho (n+1)
Số tự nhiên n có dạng n = 29k là số nguyên tố khi k=
Trả lời:
Để n=29k là số nguyên tố thì 29k là số nguyên tố
mà 29 là một số nguyên tố
Vậy với k=1 thì n=29k là một số nguyên tố.
Đáp số k=1
Bài 1 ( Dạng 1): Cho p là số nguyên tố và 2 số 8p -1; 8p + 1 là số nguyên tố. Hỏi số thứ 3 là số nguyên tố hay hợp số
Bài 2 ( Dạng 1): Tìm số tự nhiên k để dãy k + 1, k + 2,…,k + 10 chứa nhiều số nguyên tố nhất
Bài 3 ( Dạng 2): Tìm số nhỏ nhất A có 6 ước; 9 ước
Bài 4 ( Dạng 2): Chứng minh rằng: (p – 1)! chia hết cho p nếu p là hợp số, không chia hết cho p nếu p là số nguyên tố.Bài 5 ( Dạng 2): Cho 2m – 1 là số nguyên tố. Chứng minh rằng m cũng là số nguyên tố
Bài 6 ( Dạng 2): Chứng minh rằng: 2002! – 1 có mọi ước số nguyên tố lớn hơn 2002
Bài 7 ( Dạng 3): Tìm n là số tự nhiên khác 0 để:
a) n4+ 4 là số nguyên tố
b) n2003+n2002+1 là số nguyên tố
Bài 8 ( Dạng 3): Cho a,b,c,d thuộc N* thỏa mãn ab = cd. Chứng tỏ rằng số A = an+bn+cn+dn là hợp số với mọi số tự nhiên n
Bài 9 ( Dạng 4): Tìm số nguyên tố p sao cho 2p+1 chia hết cho p
Bài 10 ( Dạng 4): Cho p là số nguyên tố lớn hơn 2. Chứng tỏ rằng có vô số số tự nhiên n thỏa mãn n.2n -1 chia hết cho p
K MIK NHA BN !!!!!!
B1 :Ta biết bình phương của một số nguyên chia cho 3 dư 0 hoặc 1
đơn giản vì n chia 3 dư 0 hoặc ±1 => n² chia 3 dư 0 hoặc 1
* nếu p = 3 => 8p+1 = 8.3 + 1 = 25 là hợp số
* xét p nguyên tố khác 3 => 8p không chia hết cho 3
=> (8p)² chia 3 dư 1 => (8p)² - 1 chia hết cho 3
=> (8p-1)(8p+1) chia hết cho 3
Vì gt có 1 số là nguyên tố nến số còn lại chia hết cho 3, rõ ràng không có số nào là 3 => số này là hợp số
B2:Xét k = 0 thì được dãy số {1 ; 2 ; 10} có 1 số nguyên tố (1)
* Xét k = 1
ta được dãy số {2 ; 3 ; 11} có 3 số nguyên tố (2)
* Xét k lẻ mà k > 1
Vì k lẻ nên k + 1 > 2 và k + 1 chẵn
=> k + 1 là hợp số
=> Dãy số không có nhiều hơn 2 số nguyên tố (3)
* Xét k chẵn , khi đó k >= 2
Suy ra k + 2; k + 10 đều lớn hơn 2 và đều là các số chẵn
=> k + 2 và k + 10 là hợp số
=> Dãy số không có nhiều hơn 1 số nguyên tố (4)
So sánh các kết quả (1)(2)(3)(4), ta kết luận với k = 1 thì dãy có nhiều số nguyên tố nhất
B3:Số 36=(2^2).(3^2)
Số này có 9 ước là:1;2;3;4;6;9;12;18;36
Số tự nhiên nhỏ nhất có 6 ước là số 12.
Cho tập hợp ước của 12 là B.
B={1;2;3;4;6;12}
K MIK NHA BN !!!!!!
Tìm số tự nhiên n nhỏ nhất có các tính chất: n có đúng 30 ước số tự nhiên; Khi phân tích ra thứa số nguyên tố thi n có dạng n = 2x . 3x, trong đó x+y = 9
mình xin lỗi đừng giận mình nữa mình sẽ đưa bài khác lên mà