Phương trình đường thẳng chứa trục Ox trong không gian Oxyz là
A. x = 0 y = 0 z = t .
B. x = 5 t y = t z = 0 .
C. x = t + 1 y = 0 z = 0 .
D. x = t y = t z = t .
Phương trình đường thẳng chứa trục Ox trong không gian Oxyz là
A. x = 0 y = 0 z = t .
B. x = 5 t y = t z = 0 .
C. x = t + 1 y = 0 z = 0 .
D. x = t y = t z = t .
Trong không gian Oxyz, lập phương trình tham số của đường thẳng d đi qua điểm A(-2;3;1), vuông góc với trục Ox, đông thời d song song với mặt phẳng: (P): x + 2y - 3z = 0
A. d: x = 2, y = -3 + 3t, z = -1 + 2t
B. d: x = -2, y = 3 - 3t, z = 1 + 2t
C. d: x = -2, y = 3 + 3t, z = 1 + 2t
D. Đáp án khác
Trong không gian với hệ trục tọa độ Oxyz, cho đường thẳng d có phương trình x - 1 2 = y - 5 = z - 3 4 . Viết phương trình mặt phẳng α chứa trục Oy và song song với đường thẳng d
A. -2x + y = 0
B. x - 2z = 0
C. 2x - z = 0
D. 2x + z = 0
Đáp án C
Ta có n α → = u O y → , u d → = - 4 ; 0 ; 2 ⇒ α : 2 x - z = 0
Trong không gian Oxyz, mặt phẳng chứa trục Ox và đi qua điểm A(1;1;-1) có phương trình là
A. z+1=0
B. y+z=0
C. x+z=0
D. x-y=0
Trong không gian Oxyz, cho điểm A(1;1;−1) Phương trình mặt phẳng (P) đi qua A và chứa trục Ox là
A. x+y=0
B. x+z=0
C. y-z=0
D. y+z=0
Trong không gian Oxyz, cho mặt cầu ( S ) : x 2 + y 2 + z 2 - 6 x + 4 y - 2 z + 5 = 0 Phương trình mặt phẳng (Q) chứa trục Ox và cắt (S) theo giao tuyến là một đường tròn bán kính bằng 2 là
A. (Q): 2y+z=0
B. (Q): 2x-z=0
C. (Q): y-2z=0
D. (Q): 2y-z=0
Đáp án D
Phương pháp:
Trong đó
d: khoảng cách từ tâm O đến mặt phẳng (P),
r: bán kính đường tròn là giao tuyến của mặt cầu (S) và mặt phẳng (P)
R: bán kính hình cầu.
Cách giải:
( S ) : x 2 + y 2 + z 2 - 6 x + 4 y - 2 z + 5 = 0
=> (S) có tâm I(3;-2;1) bán kính R = 3
(Q) cắt (S) theo giao tuyến là một đường tròn bán kính r = 2
Ta có
là một VTCP (Q)
Khi đó
Phương trình mặt phẳng (Q) đi qua O(0;0;0) và có VTPT n → =(0;b;c) là:
Khoảng cách từ tâm I đến (Q):
Phương trình mặt phẳng (Q): 2y -z =0
Trong không gian Oxyz, cho mặt cầu (S): x 2 + y 2 + z 2 - 6 x + 4 y - 2 z + 5 = 0 . Phương trình mặt phẳng (Q) chứa trục Ox và cắt (S) theo giao tuyến là một đường tròn bán kính bằng 2 là
A. (Q): 2y + z = 0
B. (Q): 2x - z = 0
C. (Q): y - 2z = 0
D. (Q): 2y - z = 0
Đáp án D
Phương pháp: d 2 + r 2 = R 2
Trong đó,
d: khoảng cách từ tâm O đến mặt phẳng (P),
r: bán kính đường tròn là giao tuyến của mặt cầu (S)
và mặt phẳng (P),
R: bán kính hình cầu.
Cách giải:
(S): x 2 + y 2 + z 2 - 6 x + 4 y - 2 z + 5 = 0 <=> x - 3 2 + y + 2 2 + z - 1 2 = 9
=> (S) có tâm I(3; –2;1) bán kính R = 3
(Q) cắt (S) theo giao tuyến là một đường tròn bán kính r = 2
Ta có: d 2 + r 2 = R 2
Gọi n → a ; b ; c , n → ≠ 0 là một VTPT của (Q). Khi đó n → vuông góc với VTCP n → 1 ; 0 ; 0 của Ox
=>1.a + 0.b +).c = 0 ó a = 0
Phương trình mặt phẳng (Q) đi qua O(0;0;0) và có VTPT n → 0 ; b ; c , n → ≠ 0 là:
0.(x – 0) + b(y – 0) + c(z – 0) ó by + cz = 0
Khoảng cách từ tâm I đến (Q):
Cho c = –1 => b = 2 => n → 0 ; 2 ; - 1
Phương trình mặt phẳng (Q): 2y - z = 0
Trong không gian với hệ toạ độ Oxyz, cho đường thẳng d : x = 0 y = t z = 1 . Viết phương trình mặt phẳng song song và cách đều đường thẳng d và trục x′Ox.
A. z-1/2=0.
B. z+1/2=0.
C. z-1=0.
D. z+1=0
Trong không gian với hệ tọa độ Oxyz, cho d là đường thẳng đi qua gốc tọa độ O, vuông góc với trục Ox và vuông góc với đường thẳng ∆ : x = 1 + t y = 2 - t z = 1 - 3 t . Phương trình của d là.
A. x = t y = 3 t z = - t
B. x = t y = - 3 t z = - t
C. x 1 = y 3 = z - 1
D. x = 0 y = - 3 t z = t