Cho hàm số y = f x có đạo hàm liên tục trên ℝ , thỏa mãn các điều kiện f x > 0 , ∀ x ∈ ℝ , f ' x + 3 x x - 2 f x = 0 ∀ x ∈ ℝ , và f 0 = 5 . Giá trị của f 2 bằng
A. 5 e 4
B. 5 e - 12
C. 5 e 6
D. 5 e 16
Cho hàm số y = f x có đạo hàm liên tục trên R, thỏa mãn các điều kiện f x > 0 ∀ x ∈ ℝ , f ' x + 3 x x - 2 f x = 0 ∀ x ∈ ℝ và f 0 = 5 . Giá trị của f(2) bằng
A. 5 e 4
B. 5 e - 12
C. 5 e 6
D. 5 e 16
Cho hàm số y=f(x) có đạo hàm liên tục trên ℝ thỏa mãn f'(x) -xf(x) = 0, f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e .
B. 1 e .
C. e .
D. e.
Cho hàm số y = f(x) có đạo hàm liên tục trên ℝ thỏa mãn f ' x - x f x = 0 , f x > 0 , ∀ x ∈ ℝ và f(0) = 1. Giá trị của f(1) bằng?
A. 1 e
B. 1 e
C. e
D. e
Xét hàm số f(x) có đạo hàm liên tục trên ℝ và thỏa mãn điều kiện f(1)=1 và f(2)=4 Tính J = ∫ 1 2 f ' x + 2 x - f x + 1 x 2 dx
A. J = 1 + ln 4
B. J = 4 - ln 2
C. J = ln 2 - 1 2
D. J = 1 2 + ln 4
Cho hàm số y = f(x) xác định và liên tục trên ℝ thỏa mãn đồng thời các điều kiện sau: f ( x ) > 0 , ∀ ∈ ℝ f ' x = - e x . f 2 x , ∀ ∈ ℝ f 0 = 1 2
Tính giá trị của f(ln2)
A. ln 2 + 1 2
B. 1 4
C. 1 3
D. ln 2 2 + 1 2
Đáp án C
Ta có f ' x = - e x . f 2 x ⇔ f ' x f 2 x = - e x ⇔ ∫ f ' x f 2 x d x = ∫ - e x d x = ∫ d f x f 2 x d x = - e x + C
⇔ - 1 f x = - e x + C ⇔ f x = 1 e x - C mà f 0 = 1 2 ⇒ 1 1 - C = 1 2 ⇒ C = - 1
Vậy f x = 1 e x + 1 ⇒ f ln 2 = 1 e ln 2 + 1 = 1 2 + 1 = 1 3 .
Cho hàm số y = f(x) xác định và liên tục trên ℝ thỏa mãn đồng thời các điều kiện sau: f(x) > 0 với ∀ x ∈ ℝ , f ' ( x ) = - e x . f 2 x với ∀ x ∈ ℝ f 0 = 1 2 . Phương trình tiếp tuyến của đồ thị tại điểm có hoành độ x 0 = ln 2 là:
A. 2 x + 9 y - 2 ln 2 = 0
B. 2 x - 9 y - 2 ln 2 + 3 = 0
C. 2 x - 9 y + 2 ln 2 - 3 = 0
D. 2 x + 9 y - 2 ln 2 - 3 = 0
Đáp án D
Ta có f ' x = - e x . f 2 x ⇔ - f ' x f 2 x = e x ⇔ ∫ - f ' x f 2 x d x = ∫ e x d x ⇔ 1 f x = e x + C
Mà f 0 = 1 2 ⇒ 1 f 0 = e 0 + C ⇔ C + 1 = 2 ⇒ C = 1 → f x = 1 e x + 1
Do đó f ' x = - e x e x + 1 2 ⇒ f ' ln 2 = - 2 9 . Vậy phương trình tiếp tuyến là 2 x + 9 y - 2 ln 2 - 3 = 0 .
Cho hàm số f(x) có đạo hàm liên tục trên ℝ và thỏa mãn f(x) > 0, ∀ x ∈ ℝ . Biết f(0) = 1 và f ' ( x ) = ( 6 x - 3 x 2 ) f ( x ) . Tìm tất cả các giá trị thực của tham số m để phương trình f(x) = m có nghiệm duy nhất.
Cho hàm số y = f(x) liên tục trên khoảng - ∞ ; + ∞ , thỏa mãn các điều kiện l i m x → 0 f x x = 2 và hàm số y = f 2 x sin 2 x k h i x > 0 a x + b k h i x ≤ 0 có đạo hàm tại điểm x = 0 Giá trị của biểu thức a + b bằng
A. 2
B. 3
C. 0
D. 1
Mặt khác hàm số có đạo hàm tại điểm
Chọn A
Cho hàm số f(x) liên tục trên R thỏa mãn điều kiện: f ( 0 ) = 2 3 , f ( x ) > 0 , ∀ x ∈ ℝ và f ( x ) . f ' ( x ) = ( 2 x + 1 ) 1 + f 2 ( x ) , ∀ x ∈ ℝ . Khi đó giá trị f(1) bằng: