A = -1 + 3 – 5 + 7 ... – 101 + 103
Rút gọn A = \(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+....+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)
Giải hộ mình với mai phải nộp euif
cho A= 1+2-3+4-5+6+...+100+101-102+103
B= 1+(-3)+5+(-7)+...+101+(-103)+105
so sánh A và B
A= [(1+101)x101:2]-(102-103)
A= 5151+1
A=5152
B= [1+(-3)]+[4+(-5)]+.......[101+(-103)]+105
B= (-2)+(-2)...........+(-2)+105
=> A>B
B=(-2)x26+105
B=(-56)+105
B= 49
a) A= 1+(-2)+(-3)+4+5(-6)+(-7)+8+9+...+99+100-101+102+103
b) B=1+(-3)+5+(-7)+...+57+(-99)+101
Tính:
a, A= 1+(-2)+(-3)+4+5+(-6)+(-7)+8+...+99-100-101+102+103
b,B=1+(-3)+5+(-7)+...+97+(-99)+101
Tính A=-1+3-5+7-...-101+103
Tính A=-1+3-5+7-...-101+103
Oggy và những chú gián làm sai rui. Có cả số âm mà
help me !
tính S = \(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+\sqrt{5}7}+.....+\frac{1}{101\sqrt{103}+103\sqrt{101}}\text{ [}\)!
Xét biểu thức phụ : \(\frac{1}{\left(2n+3\right)\sqrt{2n+1}+\left(2n+1\right)\sqrt{2n+3}}=\frac{1}{\sqrt{2n+1}.\sqrt{2n+3}\left(\sqrt{2n+1}+\sqrt{2n+3}\right)}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{\sqrt{2n+1}.\sqrt{2n+3}\left[\left(2n+3\right)-\left(2n+1\right)\right]}\)
\(=\frac{\sqrt{2n+3}-\sqrt{2n+1}}{2\sqrt{2n+1}.\sqrt{2n+3}}=\frac{1}{2}\left(\frac{1}{\sqrt{2n+1}}-\frac{1}{\sqrt{2n+3}}\right)\)với \(n\ge1\)
Áp dụng : \(S=\frac{1}{3\sqrt{1}+1\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+7\sqrt{5}}+...+\frac{1}{101\sqrt{103}+103\sqrt{101}}\)
\(=\frac{1}{2}\left(\frac{1}{\sqrt{1}}-\frac{1}{\sqrt{3}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}\right)+\frac{1}{2}\left(\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}\right)+...+\frac{1}{2}\left(\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{3}}+\frac{1}{\sqrt{3}}-\frac{1}{\sqrt{5}}+\frac{1}{\sqrt{5}}-\frac{1}{\sqrt{7}}+...+\frac{1}{\sqrt{101}}-\frac{1}{\sqrt{103}}\right)\)
\(=\frac{1}{2}\left(1-\frac{1}{\sqrt{103}}\right)\)
Tất cả bằng 1 tin đi
help me !
tính S = \(\frac{1}{3+\sqrt{3}}+\frac{1}{3\sqrt{5}+5\sqrt{3}}+\frac{1}{5\sqrt{7}+\sqrt{5}7}+.....+\frac{1}{101\sqrt{103}+103\sqrt{101}}\text{Doumo arigatou}\)!