Ta có: a+b=c+d và a.b+1=d.c chứng tỏ d=c
Cho a+b=c+d và a.b+1=c.d
Chứng tỏ c=d
Co các số nguyên a,b,c,d
a+b=c+d và a.b + 1=c.d
chứng tỏ c=d
với a,b,c là 3 số dương thỏa mãn a.b=d.c=1 .
Chứng minh: (a+b)(c+d) +4 \(\ge\) 2(a+b+c+d)
cho a,b,c thuộc Z
thỏa a+b=c+d
a.b+1=c.d
chứng tỏ c=d
https://hoc24.vn/hoi-dap/question/723684.html
câu này mình trả lời cho bạn rồi mà
3) cho a,b,c thuộc Z
thỏa a+b=c+d
a.b+1=c.d
chứng tỏ c=d
\(a+b=c+d\Rightarrow a=c+d-b\)
\(\text{Ta có:}ab+1=cd\)
\(\Leftrightarrow\left(c+d-b\right)b+1=cd\)
\(\Leftrightarrow bc+bd-b^2-cd=-1\)
\(\Leftrightarrow c\left(b-d\right)-b\left(b-d\right)=-1\)
\(\Leftrightarrow\left(b-d\right)\left(c-b\right)=-1\)
\(\text{Vì }b,c,d\in Z\)
\(TH1:\left\{{}\begin{matrix}b-d=1\\c-b=-1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}d=b-1\\c=b-1\end{matrix}\right.\Rightarrow c=d\)
\(TH2:\left\{{}\begin{matrix}b-d=-1\\c-b=1\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}d=b+1\\c=b+1\end{matrix}\right.\Rightarrow d=c\)
\(\text{Vậy }d=c\)
a+b=c+d⇒a=c+d−b
Ta có:ab+1=cd
⇔(c+d−b)b+1=cd
⇔bc+bd−b2−cd=−1
⇔c(b−d)−b(b−d)=−1
⇔(b−d)(c−b)=−1
Vì b,c,d∈Z
TH1:{b−d=1c−b=−1⇒{d=b−1c=b−1⇒c=d
TH2:{b−d=−1c−b=1⇒{d=b+1c=b+1⇒d=c
cho biết a/b<c/d (a,b,c,d e z)
b>o;d>o
chứng tỏ a.b>d.c
Chứng tỏ rằng từ tỉ lệ thức a/b = c/d ta suy ra tỉ lệ thức
\(\frac{a.b}{c.d}=\frac{a^2+b^2}{c^2+d^2}\)
\(\frac{a}{b}=\frac{c}{d}\Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a}{b}.\frac{a}{b}=\frac{a^2}{b^2};\frac{a}{b}.\frac{c}{d}=\frac{c}{d}.\frac{c}{d}=\frac{c^2}{d^2}\\ \Rightarrow\frac{a}{b}.\frac{c}{d}=\frac{a^2}{b^2}=\frac{c^2}{d^2}=\frac{a^2+c^2}{b^2+d^2}\)
chứng tỏ rằng , nếu a/b = c/d thì ta có a+b / a-b = c+d / c-d ( a# b và c# d )
câu 1: cho bốn số tự nhiên a;b;c;d sao cho a+b+c+d khác 0 b+c+d/a=c+d+a/b=d+a+c/b=a+b+c/d=k tính giá trị của k
câu 2: cho tỉ lệ thức a/b=c/d chứng tỏ rằng a^2+b^2/c^2+d^2 = a.b/c.d