Dạng tổng quát của số tự nhiên chia hết cho 3 là:
A. 3k(k∈N)
B. 5k+3(k∈N)
C. 3k+1(k∈N)
D. 3k+2(k∈N)
Tuyển Cộng tác viên Hoc24 nhiệm kì 26 tại đây: https://forms.gle/dK3zGK3LHFrgvTkJ6
Dạng tổng quát của các cố tự nhiên chia hết cho 3 là:
A. 3k (k ∈ N) B. 5k + 3 (k ∈ N) C. 3k + 1 (k ∈ N) D. 3k + 2 (k ∈ N)
Dạng tổng quá của các số tự nhiên chia 5 dư 2 là:
A. 5k (k ∈ N) B. 5k + 2 (k ∈ N) C. 2k + 5 (k ∈ N) D. 5k + 4 (k ∈ N)
Dạng tổng quát của các cố tự nhiên chia hết cho 3 là:
A. 3k (k ∈ N) B. 5k + 3 (k ∈ N) C. 3k + 1 (k ∈ N) D. 3k + 2 (k ∈ N)
Dạng tổng quá của các số tự nhiên chia 5 dư 2 là:
A. 5k (k ∈ N) B. 5k + 2 (k ∈ N) C. 2k + 5 (k ∈ N) D. 5k + 4 (k ∈ N)
câu 1 đáp án A
câu 2 Đáp ắn B
SORRY nãy câu này sai sửa lại đậy
Dạng tổng quá của các số tự nhiên chia 5 dư 2 là:
A. 5k (k ∈ N) B. 5k + 2 (k ∈ N) C. 2k + 5 (k ∈ N) D. 5k + 4 (k ∈ N)
dang tong quat cua so tu nhien chia het cho 3 la
a,3k (k ϵ n) b,5k + 3 (k ϵ n)
c,3k +1 (k ϵ n) d,3k+2(k ϵ n)
Số hạng chia hết cho a có dạng x = a.k (k ∈ N)
Do đó số hạng chia hết cho 3 có dạng x = 3k (k ∈ N)
Dạng số tự nhiên nào sau đây ko thể là số chính phương?
A.5k+3 (k thuộc N) B.5k (k thuộc N) C.5k+4 (k thuộc N) D.3k+1 (k thuộc N)
Giải giùm mk nha các bn rồi mk tích cho.
Tìm số tự nhiên n sao cho:
a) n+3 chia hết cho n-1
b) 4n+3 chia hết cho 2n+1
c) 6n+1 chia hết cho 3n-2
d) 2n+3 chia hết cho 3n+2
Tìm số tự nhiên k sao cho:
a) k.(3k+2) = 5
b) (k+1).(k+2).(k+3) = 2184
a)
\(n+3⋮n-1\Leftrightarrow\left(n-1\right)+4⋮n-1\)
\(\Rightarrow4⋮n-1\) (vì n-1 chia hết cho n-1)
\(\Rightarrow n-1\inƯ\left(4\right)=\left\{1;2;4\right\}\)
\(n-1=1\Rightarrow n=2\)
\(n-1=2\Rightarrow n=3\)
\(n-1=4\Rightarrow n=5\)
Vậy \(n\in\left\{2;3;5\right\}\)
Chứng minh rằng: “Với mọi số tự nhiên n, n3 chia hết cho 3 thì n chia hết cho 3”. Một bạn học sinh đã dùng phản chứng như sau:
Bước 1: Giả sử n không chia hết cho 3 khi đó n = 3k + 1 hoặc n = 3k + 2, k ∈ N .
Bước 2: Với n = 3k + 1 ta có n3 = (3k + 1)3 = 27k3 + 27k2 + 9k + 1 chia hết cho 3
Bước 3: Với n = 3k + 2 ta có n3 = (3k + 2)3 = 27k3 + 54k2 + 36k + 4 không chia hết cho 3 (mâu thuẫn)
Bước 4: Vậy n chia hết cho 3.
Lập luận trên sai từ bước nào?
A. Bước 1.
B. Bước 2
C. Bước 3.
D. Bước 4.
Đáp án: B
Bước 2 sai vì 27k3 + 27k2 + 9k + 1 không chia hết cho 3
Biết 2 là số dư khi chia số a cho 3. Khi đó a có thể viết là :
A. 2k + 3(k thuộc N)
B. 3k + 2(k thuộc N)
C. 3k + 1(k thuộc N)
D. 3k(k thuộc N)
Mn giải giúp mik á~
Sắp thi giữa kì rùi mn cố lên nha~
ví dụ là 3k + 1 = 3 . 4 + 1 = 13
13 khi chia cho 3 thì còn dư 1 3k + 2 cũng vậy , 2 là số dư của phép tính đó
Oki, thank you nha!
CHÚC BẠN THI GIỮA KÌ TỐT
n= 3k 1 (k ∈ N) A = 9k2 6k +1 chia cho 3 dư 1
vì sao 3k+1=9k^2 6k+1
tính số phần tử của tập hợp
B ={ n eN | n = 3k + 2 với k là số tự nhiên chẵn và k < 19
Cho K thuộc N*. Chứng minh rằng :
3k+2 và 5k+3 là 2 số nguyên tố cùng nhau
Gọi UCLN(3k+2,5k+3) là d (d thuộc N*)
3k+2 chia hết cho d => 15k+10 chia hết cho d
5k+3 chia hết cho d => 15k+9 chia hết cho d
=> 15k+10-15k-9 chia hết cho d
=> 1 chia hết cho d
Mà d thuộc N*
=> d=1
=> 3k+2 và 5k+3 nguyên tố cùng nhau
tính số phần tử của tập hợp
A = { 10 ; 13 ; 16 ; 19 ; ..............................;70}
B = { n EN | n = 3k + 2 với k là số tự nhiên ch ;ẵn và k < 19 }
C = { 3 ; 9 ; 15 ; 21 ; 27 }