Tổng phần thực và phần ảo của số phức z = 1 − 2 i − 2 + 3 i là
A. 11
B. -3
C. 4+7i
D. 4-7i
Cho số phức z thỏa mãn z ¯ = ( 2 + i ) 2 ( 1 - 2 i ) . Khi đó tổng bình phương phần thực và phần ảo của số phức z là
A. 18
B. 27
C. 61
D. 72
Tìm tổng phần thực và phần ảo của số phức z thỏa mãn: (1 - i) ( z - 2i) = 2 + i.
A. 4.
B. 3.
C. 5.
D. 7.
Tính tổng phần thực và phần ảo của số phức: z = i 5 . ( 1 + i ) . ( 2 - 2 i )
A. 0
B. 2
C. 4
D. -2
Tìm tổng phần thực và phần ảo của số phức z thỏa mãn z + 2 z ¯ = 2 - i 2 1 - i
A. 13.
B. – 3.
C.10.
D. -10.
Chọn C.
Đặt z = x + yi
Tổng phần thực và phần ảo của số phức z là -3+ 13 = 10.
Cho z là số phức thỏa mãn điều kiện 2 z - 1 1 + i + z + 1 1 - i = 2 - 2 i . Tính tổng bình phương phần thực và phần ảo của số phức w = 9 z 2 + 6 z + 1 .
A. 25
B. 1
C. 49
D. 41
Cho z là số phức thỏa mãn điều kiện 2 z − 1 1 + i + z ¯ + 1 1 − i = 2 − 2 i . Tính tổng bình phương phần thực và phần ảo của số phức w = 9 z 2 + 6 z + 1
A. 25
B. 1
C. 49
D. 41
Cho số phức z thỏa mãn 5 z + i = 2 - i z + 1 . Gọi a, b lần lượt là phần thực và phần ảo của số phức 1 + z + z 2 , tổng a+b bằng
A. 13
B. -5
C. 9
D. 5
Cho số phức z thỏa mãn 5 z ¯ + i = 2 - i z + 1 . Gọi a, b lần lượt là phần thực và phần ảo của số phức 1 + z + z 2 , tổng a + b bằng
A. 13
B. -5
C. 9
D. 5
Gọi z là số phức có môđun nhỏ nhất và thỏa mãn z + 1 + i = z ¯ + i . Tổng phần thực và phần ảo của số phức z bằng
Gọi z là số phức có môđun nhỏ nhất và thỏa mãn z + 1 + i = z ¯ + i . Tổng phần thực và phần ảo của số phức z bằng:
A. 3 10
B. - 1 5
C. - 3 10
C. 1 5