Cho ∆ A B C vuông tại A, cạnh AB=4,BC=5. Quay ∆ A B C quanh AB được khối nón có thể tích V 1 , quay ∆ A B C quanh AC được khối nón có thể tích V 2 thì:
A. V 1 = V 2 = 12 π
B. V 1 > V 2
C. V 1 = V 2 = 16 π
D. V 1 < V 2
Cho ∆ ABC vuông tại A, cạnh AB = 4, BC = 5. Quay ∆ ABC quanh AB được khối nón có thể tích V 1 , quay ∆ ABC quanh AC được khối nón có thể tích V 2 thì:
A. V 1 = V 2 = 12 π
B. V 1 > V 2
C. V 1 = V 2 = 16 π
D. V 1 < V 2
Cho tam giác ABC vuông tại A, cạnh AB=4, BC=5. Quay tam giác ABC quanh AB được khối nón có thể tích V 1 , quay tam giác ABC quanh AC được khối nón có thể tích V 2 thì
A. V 1 = V 2 = 12 π
B. V 1 > V 2
C. V 1 = V 2 = 16 π
D. V 1 < V 2
Trong không gian cho tam giác ABC vuông tại A có AB=a và BC=2a. Quay tam giác ABC xung quanh cạnh AB ta thu được khối nón có thể tích bằng
A. π a 3 .
B. 3 π a 3 .
C. 3 3 π a 3 .
D. 2 3 π a 3 .
Trong không gian cho tam giác ABC vuông tại A có A B = a và B C = 2 a . Quay tam giác ABC xung quanh cạnh AB ta thu được khối nón có thể tích bằng
A. πa 3
B. 3 πa 3
C. 3 3 πa 3
D. 2 3 πa 3
Trong không gian cho tam giác ABC vuông tại A có AB = 2a và BC = 2a. Quay tam giác ABC xung quanh cạnh AB ta thu được khối nón có thể tích bằng
A . πa 3
B . 3 π a 3
C . 3 3 πa 3
D . 2 3 πa 3
Đáp án A
Ta có chiều cao của khối nón bán kính hình tròn đáy lần lượt là
h = AB = a và r = AC =
Suy ra thể tích của khối nón là
Phân tích phương án nhiễu.
Phương án B: Sai do HS thiếu 1 3 trong công thức tính thể tích.
Phương án C: Sai do HS xác định h = a 3 và bán kính đáy r = a nên
Phương án D: Sai do HS nhớ sai công thức tính thể tích khối nón
Cho tam giác ABC vuông tại A. AB=c, AC=b. Quay tam giác ABC xung quanh đường thẳng chứa cạnh AB được một hình nón có thể tích bằng:
Cho tam giác ABC vuông tại A. AB=c,AC=b. Quay tam giác ABC xung quanh đường thẳng chứa cạnh AB được một hình nón có thể tích bằng
A. 1 3 πbc 2
B. 1 3 b c 2
C. 1 3 b 2 c
D. 1 3 πb 2 c
Chọn đáp án D
Phương pháp
Sử dụng công thức tính thể tích khối nón có bán kính đáy r và đương cao h là
Cách giải
Quay tam giác ABC quanh đường thẳng AB ta được khối nón có bán kính đáy r=AC=b và đường cao h=AB=c. Khi đó thể tích của khối nón bằng
Cho tam giác ABC vuông tại A, AB=c, AC=b. Quay tam giác ABC xung quanh đường thẳng chứa cạnh AB ta được một hình nón có thể tích bằng
Cho tam giác ABC vuông tại A và có AB=4, AC=5. Tính thể tích của khối nón sinh ra khi tam giác ABC quay xung quanh cạnh AB