Tìm diện tích hình phẳng giới hạn bởi các đường y = x + s i n 2 x , y = x và x = 0 , x = π .
A. π 4
B. π 6
C. π 2
D. π
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x), y=0, x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0, x=a bằng:
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = 2 , x = 0 , x = 1 .
A. S = 4 ln 2 + e - 5
B. S = 4 ln 2 + e - 6
C. S = e 2 - 7
D. S = e - 3
Biết diện tích hình phẳng giới hạn bởi đường cong y=f(x),y=0,x=0,x=2a bằng S. Diện tích hình phẳng giới hạn bởi đường cong y=f(2x), trục hoành Ox và hai đường thẳng x=0,x=a bằng
A. S/4.
B. 4S.
C. 2S.
D. S/2.
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = 2 , x = 0 và x = 1.
A. S = 4 ln 2 + e - 5
B. S = 4 ln 2 + e - 6
C. S = e 2 - 7
D. S = e - 3
Đáp án A
Phương trình hoành độ giao điểm e x = 2 ⇔ x = ln 2
Suy ra diện tích cần tìm bằng S = ∫ 0 ln 2 e x - 2 d x + ∫ ln 2 0 e x - 2 d x = 4 ln 2 + e - 5 .
Cho hình phẳng giới hạn bởi đồ thị các hàm số y = x , đường thẳng y = 2 - x và trục hoành. Diện tích hình phẳng sinh bởi hình phẳng giới hạn bởi các đồ thị trên là
A. 7 6 .
B. 4 3 .
C. 5 6 .
D. 5 4 .
Tính diện tích S của hình phẳng giới hạn bởi các đường y = e x , y = e - x , x = 1 .
A. S = e + 1 2 - 2
B. S = e - 1 e - 2
C. S = e + 1 e
D. S = e + 1 e - 2
Tính diện tích S của hình phẳng giới hạn bởi các đường y = ex, y = e–x, x = 1.
A. S = e + 1 2 - 2
B. S = e - 1 e - 2
C. S = e + 1 e
D. S = e + 1 e - 2
Kí hiệu S(t) là diện tích của hình phẳng giới hạn bởi các đường y = 2x + 1; y = 0; x = 1; x = t Tìm t để S(t) = 10
A. t = 4
B. t = 13
C. t = 3
D. t = 14
Tính diện tích S hình phẳng giới hạn bởi các đường y = x 2 + 1 , x = - 1 , x = 2 và trục hoành
A. S=6
B. S=13/6
C. S=13
D. S=16
Tính diện tích S hình phẳng giới hạn bởi các đường y = x 2 + 1 ; x=-1; x=2 và trục hoành.
A. S = 6
B. S = 13/6
C. S = 13.
D. S = 16.