Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
20 tháng 9 2019 lúc 14:37

Phương pháp:

Quan sát bảng biến thiên và tìm điểm cực đại, cực tiểu và các giá trị cực đại, cực tiểu tương ứng.

Cách giải:

Số cách chọn là: 6.4 = 24 (cách). Quan sát bảng biến thiên ta thấy:

Hàm số đạt cực đại tại x = 2 và yCD  =  3 .

Hàm số đạt cực tiểu tại x = 2 và yCT  = 0 .

Vậy yCD  = 3 và yCT  =  0 .

Chọn: B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
28 tháng 12 2017 lúc 11:38

Đáp án B

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
24 tháng 7 2017 lúc 16:30

Chọn D

Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
22 tháng 8 2019 lúc 6:06

Chọn C.

Phương pháp: Dựa vào bảng biến thiên để xác định tiệm cận, cực trị, giá trị lớn nhất, giá trị nhỏ nhất.

Cách giải: Dựa vào bảng biến thiên dễ thấy đồ thị hàm số có tiệm cận ngang y = 0 và hai tiệm cận đứng x = 2, x = -2. Vậy (I) sai và (IV) đúng.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
18 tháng 5 2019 lúc 2:14

Chọn D 

Xét hàm số .

.

Ta lại có thì . Do đó thì .

thì . Do đó thì .

Từ đó ta có bảng biến thiên của như sau

Dựa vào bảng biến thiên, ta có

I. Hàm số có 3 điểm cực trị . LÀ MỆNH ĐỀ ĐÚNG.

II. Hàm số đạt cực tiểu tại LÀ MỆNH ĐỀ SAI.

III. Hàm số đạt cực đại tại LÀ MỆNH ĐỀ SAI.

IV. Hàm số đồng biến trên khoảng LÀ MỆNH ĐỀ ĐÚNG.

V. Hàm số nghịch biến trên khoảng LÀ MỆNH ĐỀ SAI.

 

Vậy có hai mệnh đề đúng.

tuan dat Nguyen
21 tháng 12 2020 lúc 21:13

ở chỗ x<1=> x= -2 thì sao bạn ơi =>(x^2 -3) =1 >0 thì sao f ' (...)>0 được ????

Khách vãng lai đã xóa
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
2 tháng 12 2019 lúc 12:07

Đáp án A

Từ bảng biến thiên của hàm số y=f(x), suy ra bảng biến thiên của hàm số  y = f ( x ) là 

Dựa vào bảng biến thiên, ta suy ra hàm số có 4 điểm cực trị.

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
15 tháng 12 2017 lúc 5:45

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 12 2019 lúc 3:47

Đáp án D.

Từ bảng biến thiên của hàm số ta có hàm số đạt cực đại tại x = 0 , y C D = 5 ;  hàm số đạt cực tiểu tại x = 4 , y C T = − 3. Do đó phương án đúng là D.

Phân tích phương án nhiễu.

Phương án A: Sai do HS nhầm với giá trị cực tiểu của hàm số.

Phương án B: Sai do HS nhầm với giá trị cực đại của hàm số.

Phương án C: Sai do HS nhầm với điểm cực tiểu của hàm số.