Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tứ diệp thảo mãi mãi yêu...
Xem chi tiết
Thanh Tùng DZ
30 tháng 11 2017 lúc 19:32

1.

A = | x | + 3

vì | x | \(\ge\)0 nên | x | + 3 \(\ge\)3

\(\Rightarrow\)GTNN của A = 3 khi | x | = 0 hay x = 0

tương tự

2.

M = 5 - | x |

vì | x | \(\ge\)0 nên 5 - | x  | \(\le\)5

\(\Rightarrow\)GTLN của M = 5 khi | x | = 0 hay x = 0

Vũ Minh Anh
Xem chi tiết
chuyên toán thcs ( Cool...
8 tháng 9 2019 lúc 22:21

\(\left|x+1,5\right|\ge0\forall x\)

Dấu " = " xảy ra khi 

| x + 1,5 | = 0

x = -1,5 

Vậy Min = 0 <=> x = -1,5

b) 

\(\left|x-2\right|\ge0\forall x\Rightarrow\left|x-2\right|-\frac{9}{10}\ge\frac{9}{10}\forall x\)

Dấu " = " xảy ra khi 

| x - 2 | = 0 

x = 2 

Vậy MinA = \(\frac{9}{10}\)<=> x = 2

chuyên toán thcs ( Cool...
8 tháng 9 2019 lúc 22:25

\(-\left|2x-1\right|\le0\forall x\)

Dấu " = " xảy ra khi :

- | 2x - 1 | = 0

=> x = \(\frac{1}{2}\)

Vậy MaxA = 0 <=> x = \(\frac{1}{2}\)

b) 

\(-\left|5x-3\right|\le0\forall x\Rightarrow4-\left|5x-3\right|\le4\)

Dấu " = " xảy ra khi :

- | 5x - 3 | = 0

=> x = \(\frac{3}{5}\)

Vậy Max = 4 <=> x = \(\frac{3}{5}\)

Study well 

Vũ Minh Anh
Xem chi tiết
Đỗ Ngọc Linh
Xem chi tiết
le thi kieu oanh
Xem chi tiết
Trần Linh Chi
Xem chi tiết
Trà My
31 tháng 10 2016 lúc 18:00

\(M=\left|x-\frac{5}{4}\right|+\left|x+2\right|=\left|\frac{5}{4}-x\right|+\left|x+2\right|\)

Áp dụng bđt \(\left|x\right|+\left|y\right|\ge\left|x+y\right|\)với  \(xy\ge0\) ta có: 

\(M=\left|\frac{5}{4}-x\right|+\left|x+2\right|\ge\left|\frac{5}{4}-x+x+2\right|=\left|\frac{13}{4}\right|=\frac{13}{4}\)với \(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)

Lập bảng xét dấu:

x                           -2                                 5/4                    
5/4-x             +             |                  +               0                -
x+2             -              0                 +                |                +
(5/4-x)(x+2)             -              0                 +                0               -

Nhìn bảng xét dấu dễ thấy \(-2\le x\le\frac{5}{4}=1,25\) thỏa mãn\(\left(\frac{5}{4}-x\right)\left(x+2\right)\ge0\)

Vì x nguyên => \(x\in\left\{-1;0;1\right\}\)

Vậy Mmin=13/4 khi  \(x\in\left\{-1;0;1\right\}\)

Trà My
23 tháng 5 2017 lúc 22:19

mình làm sai rồi nhé bạn

là dấu "=" xảy ra khi xy>=0

thật sự xin lỗi

Dương Kim Chi
Xem chi tiết
Nguyễn Thị Hà Tiên
9 tháng 7 2017 lúc 16:15

/x-3/>=0\(\Rightarrow\)-/x-3/<=0 maxP=12 khi x-3=0 \(\Rightarrow\)x=3

Nguyễn Huệ Lam
9 tháng 7 2017 lúc 16:04

\(P=-\left|x-3\right|+12\)

Vì \(-\left|x-3\right|\le0\Leftrightarrow-\left|x-3\right|+12\le12\)

Vậy GTLN của P là 12 tại \(-\left|x-3\right|=0\Leftrightarrow x=0\)

»βέ•Ҫɦαηɦ«
12 tháng 7 2017 lúc 13:00

Ta có : -|x - 3| \(\le0\forall x\)

Nên P = -|x - 3| + 12 \(\le12\forall x\)

Vậy Pmin = 12 , dấu "=" xảy ra khi và chỉ khi x = 3 

Nguyen Thi Bich Tram
Xem chi tiết
nguyen thuy nga
Xem chi tiết
SC__@
24 tháng 2 2021 lúc 12:31

a) Với m = -2

=> hpt trở thành: \(\left\{{}\begin{matrix}x+y=2\\-2x-y=-2\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}y=2-x\\-x=0\end{matrix}\right.\) <=> \(\left\{{}\begin{matrix}x=0\\y=2\end{matrix}\right.\)

Vậy S = {0; 2}

b) Ta có: \(\left\{{}\begin{matrix}x+y=2\left(1\right)\\mx-y=m\left(2\right)\end{matrix}\right.\) 

=> x + mx = 2 + m 

<=> x(m + 1) = 2 + m

Để hpt có nghiệm duy nhất <=> \(m\ne-1\)

<=> x = \(\dfrac{m+2}{m+1}\) thay vào pt (1)

=> y = \(2-\dfrac{m+2}{m+1}=\dfrac{2m+2-m-2}{m+1}=\dfrac{m}{m+1}\)

Mà 3x - y = -10

=> \(3\cdot\dfrac{m+2}{m+1}-\dfrac{m}{m+1}=-10\)

<=> \(\dfrac{2m+6}{m+1}=-10\) <=> m + 3 = -5(m + 1)

<=> 6m = -8 

<=> m = -4/3

c) Để hpt có nghiệm <=> m \(\ne\)-1

Do x;y \(\in\) Z <=> \(\left\{{}\begin{matrix}\dfrac{m+2}{m+1}\in Z\\\dfrac{m}{m+1}\in Z\end{matrix}\right.\)

Ta có: \(x=\dfrac{m+2}{m+1}=1+\dfrac{1}{m+1}\)

Để x nguyên <=> 1 \(⋮\)m + 1

<=> m +1 \(\in\)Ư(1) = {1; -1}

<=> m \(\in\) {0; -2}

Thay vào y :

với m = 0 => y = \(\dfrac{0}{0+1}=0\)(tm)

m = -2 => y = \(\dfrac{-2}{-2+1}=2\)(tm)

Vậy ....

Cay Đắng
Xem chi tiết
Le Thi Khanh Huyen
1 tháng 7 2016 lúc 13:52

\(\left|2+x\right|=\left|-x-2\right|\)

\(\Rightarrow A=\left|-x-2\right|+\left|3+x\right|\)

Có \(\left|a\right|+\left|b\right|\ge\left|a+b\right|\)

\(\Rightarrow A\ge\left|-x-2+3+x\right|=\left|1\right|=1\)

\(\Rightarrow GTNN\)của A là 1 khi \(-\left(x+2\right)\left(3+x\right)\ge0\Rightarrow\left(x+2\right)\left(3+x\right)\le0\)

\(\Rightarrow\hept{\begin{cases}x+2< 0\\x+3>0\end{cases}}\)

\(\Rightarrow-3< x< -2\)

Vậy \(GTNN\)của A là 1 khi \(-3< x< -2\)