Cho abc là số tự nhiên có 3 chữ số.CMR:abc chia hết cho 21<=>a-2b+4c chia hết cho 21
Cho abc là số tự nhiên có 3 chữ số. Chứng minh rằng abc chia hết cho 21 khi và chỉ khi a - 2b + 4c chia hết cho 21.
Ta có :
4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c
= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21
( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )
=> 400a + 40b + 4c chia hết cho 21
=> 4 ( 100a + 10b + c ) chia hết cho 21
=> 100a + 10b + c chia hết cho 21
=> abc chia hết cho 21
Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21
Ta có :
4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c
= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21
( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )
=> 400a + 40b + 4c chia hết cho 21
=> 4 ( 100a + 10b + c ) chia hết cho 21
=> 100a + 10b + c chia hết cho 21
=> abc chia hết cho 21
Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21
cho abc là số có 3 chữ số . CMR: abc chia hết cho 21 khi và chỉ khi (a-2b+4c)chia hết cho21
Ta có :
4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c
= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21
( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )
=> 400a + 40b + 4c chia hết cho 21
=> 4 ( 100a + 10b + c ) chia hết cho 21
=> 100a + 10b + c chia hết cho 21
=> abc chia hết cho 21
Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21
1) chứng tỏ rằng: A= 2011. 2012. 2013. 2014+ 1 là hợp số
2) cho abc chia hết chia hết cho 21. CMR (a - 2b + 4c) cũng chia hết cho 21
3) tìm số nguyên tố P sao cho P +2 và P+4 đều là số nguyên tố
Cho A= dcba ( A là số tự nhiên ). Chứng minh rằng : A chia hết cho 8 <=> ( a+2b+4c) chia hết cho 8
Cmr: abc chia hết cho 21 khi và chỉ khi (a-2b+4c) chia hết cho 21
Ta có :
4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c
= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21
( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )
=> 400a + 40b + 4c chia hết cho 21
=> 4 ( 100a + 10b + c ) chia hết cho 21
=> 100a + 10b + c chia hết cho 21
=> abc chia hết cho 21
Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21
CMR abc (có gạch ngang trên đầu) chia hêt cho 21 <=> a +2b + 4c chia hết cho 21
Ta có :
4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c
= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21
( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )
=> 400a + 40b + 4c chia hết cho 21
=> 4 ( 100a + 10b + c ) chia hết cho 21
=> 100a + 10b + c chia hết cho 21
=> abc chia hết cho 21
Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21
Cho số tự nhiên A= dcba. CTR:
a, Nếu (a+2b) chia hết cho 4 thì A chia hết cho 4 và ngược lại
b, Nếu (a+2b+4c) chia hết cho 8 thì A chia hết cho 8 và ngược lại
abc chia hết 21 <=> a - 2b + 4c chia hết cho 21
Ta có :
4 . abc = 400a + 40b + 4c = 399a + 42b + a - 2b + 4c
= 21 ( 19a + 2b ) + ( a - 2b + 4c ) chia hết cho 21
( Do 21 chia hết cho 21 và a - 2b + 4c chia hết cho 21 )
=> 400a + 40b + 4c chia hết cho 21
=> 4 ( 100a + 10b + c ) chia hết cho 21
=> 100a + 10b + c chia hết cho 21
=> abc chia hết cho 21
Vậy nếu a-2b+4c chia hết cho 21 thì abc chia hết cho 21
aaa là số tự nhiên có 3 chữ số chia hết cho ab
abab là số có 4 chữ số chia hết cho ab
abcabc là số có 6 chữ số chia hết cho abc